Companhia de Água e Esgoto do Ceará

DEN - Diretoria de Engenharia GPROJ - Gerência de Projetos de Engenharia

Fortaleza - CE

Projeto Estrutural Básico do Sistema de Esgotamento Sanitário do Bairro Conjunto Palmeiras

> VOLUME V - TOMO II Projeto Estrutural

DEN - Diretoria de Engenharia GPROJ - Gerência de Projetos

EQUIPE TÉCNICA DA GPROJ, DA HYDROS ENGENHARIA E DA PROJEKT ENGENHARIA

Produto: Projeto Estrutural Básico do Sistema de Esgotamento Sanitário do Bairro Conjunto Palmeiras

Gerente de Projetos de Engenharia

Engª. Aline Martins Brito

Coordenação de Projetos Técnicos

Eng. Adriana Silva Gonçalves

Coordenação de Serviços Técnicos de Apoio

Engº. Jorge Humberto Leal de Saboia

Coordenação de Custos e Orçamentos de Obras

Engº. Humberto Oliveira Pontes Nunes

Coordenação Geral da Hydros Engenharia e Planejamento

Engº. Ulysses Fontes Lima

Coordenação de Interfaces da Hydros Engenharia e Planejamento

Engª. Ana Liz Coelho Perdigão

Engenheiros Chefes Especialistas em Projetos da Hydros Engenharia e Planejamento

Engº. Laécio Brito Regis

Engº. Silvio Humberto Vieira Régis

Equipe Estrutural da Projekt Engenharia

Engº. Daniel de Souza Machado

Laize Lordelo

Edição

Janis Joplin S. Moura Queiroz

Arquivo Técnico

Patrícia Santos Silva

Colaboração

Ana Beatriz de Oliveira Montezuma

Gleiciane Cavalcante Gomes

I - APRESENTAÇÃO

O presente relatório consiste no Projeto Básico do Sistema de Esgotamento Sanitário do Bairro Conjunto Palmeiras - Fortaleza/CE, desenvolvido pela Gerência de Projetos (GPROJ) da Companhia de Água e Esgoto do Ceará (Cagece).

Este documento é a parte integrante do seguinte conjunto de volumes:

- Volume I Memorial Descritivo, Memorial de Cálculo, Memorial de Desapropriação, Especificações Técnicas e Manual de Operação.
- Volume II Peças Gráficas:
 - Tomo I;
 - Tomo II;
 - Tomo III;
 - Tomo IV;
 - Tomo V.
- Volume III Projeto Elétrico;
- Volume IV Projeto de Automação;
- Volume V Projeto Estrutural;
 - Tomo I:
 - Parte I;
 - Parte II;
 - Parte III.
 - Tomo II;
 - Tomo III;
 - Tomo IV.
- Volume VI Geotecnia.
 - Tomo I;
 - Tomo II.

Projeto Estrutural

RELATÓRIO TÉCNICO DO PROJETO ESTRUTURAL DO SES

PLANALTO PALMEIRAS/FORTALEZA-CE UNMTS

VOLUME I - TOMO ÚNICO

MEMORIAL DESCRITIVO, DE CÁLCULO E PLANTAS

ELABORAÇÃO POR DEMANDA, DE ESTUDOS E PROJETOS TÉCNICOS DE ENGENHARIA PARA IMPLANTAÇÃO, AMPLIAÇÃO E MELHORIAS DE SISTEMAS DE ABASTECIMENTO DE ÁGUA E DE SISTEMAS DE ESGOTAMENTO SANITÁRIO NAS LOCALIDADES PERTENCENTES ÀS SEGUINTES UNIDADES DE NEGÓCIO DA CAGECE: UNMTN, UNMTL, UNMTS, UNMTO, UNBME, UNBCL, UNBAC E UNBBJ.

0373-RT-30-ES-002 R00 FEVEREIRO DE 2017

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ - CAGECE

DIRETOR PRESIDENTE

Neurisângelo Cavalcante de Freitas

DIRETOR DE ENGENHARIA

José Carlos Lima Asfor

DIRETOR DE PLANEJAMENTO

Francied Assis De Mesquita Ciriaco

GERENCIA DE PROJETOS - GPROJ

Cailiny Darley De Menezes Medeiros Cunha

HYDROS ENGENHARIA E PLANEJAMENTO S/A

DIRETOR RESPONSÁVEL

Engo Ulysses Fontes Lima

COORDENAÇÃO

Engª Ana Liz Coelho Perdigão

ELABORAÇÃO POR DEMANDA, DE ESTUDOS E PROJETOS TÉCNICOS DE ENGENHARIA PARA IMPLANTAÇÃO, AMPLIAÇÃO E MELHORIAS DE SISTEMAS DE ABASTECIMENTO DE ÁGUA E DE SISTEMAS DE ESGOTAMENTO SANITÁRIO NAS LOCALIDADES PERTENCENTES AS SEGUINTES UNIDADES DE NEGÓCIO DA CAGECE: UNMTN, UNMTL, UNMTS, UNMTO, UNBME, UNBCL, UNBAC E UNBBJ.

PROJETO ESTRUTURAL

SISTEMA DE ESGOTAMENTO SANITÁRIO DE PLANALTO PALMEIRAS/FORTALEZA-CE – UNMTS

VOLUME I – TOMO ÚNICOMEMORIAL DESCRITIVO, DE CÁLCULO E PLANTAS

0373-RT-30-ES-002 R-00 FEVEREIRO/2017

EQUIPE TÉCNICA DA HYDROS ENGENHARIA E PLANEJAMENTO S/A

Coordenação Geral

Engº Ulysses Fontes Lima

Coordenação de Interfaces/Projeto

Engª Ana Liz Coelho Perdigão

Engenheiro Chefe Especialista em Projeto de SAA

Engº Laécio Brito Regis

Engenheiro Chefe Especialista em Projeto de SES

Engº Silvio Humberto Vieira Régis

Técnico Projetista

Técnico Alexandre Barreto Matos

Técnicos Desenhos/Informática

Técnica Camila Belarmino Simplício

Equipe Estrutural (PROJEKT ENGENHARIA – Projetos e Consultoria em Engenharia Estrutural)

Engº Daniel de Souza Machado Técnica Laize Lordelo

APRESENTAÇÃO

A HYDROS Engenharia e Planejamento S/A foi contratada pela Companhia de Água e Esgoto do Ceará – CAGECE, através do contrato PGE 11/2014, firmado entre a HYDROS e a CAGECE, em 03 de fevereiro de 2014."ELABORAÇÃO POR DEMANDA, DE ESTUDOS E PROJETOS TÉCNICOS DE ENGENHARIA PARA IMPLANTAÇÃO, AMPLIAÇÃO E MELHORIAS DE SISTEMAS DE ABASTECIMENTO DE ÁGUA E DE SISTEMAS DE ESGOTAMENTO SANITÁRIO NAS LOCALIDADES PERTENCENTES AS SEGUINTES UNIDADES DE NEGÓCIO DA CAGECE: UNMTN, UNMTL, UNMTS, UNMTO, UNBME, UNBCL, UNBAC E UNBBJ"

Este documento constitui o "Relatório técnico do Projeto Estrutural da Estação Elevatória Esgoto - EEE e Caixa de Quebra de Pressão do Sistema de Esgotamento Sanitário de Planalto Palmeiras/Fortaleza - CE" 0373–RT–30–ES-002 R00.

A Hydros Engenharia e Planejamento S/A. apresenta o relatório técnico do projeto estrutural, executado pela PROJEKT ENGENHARIA – Projetos e Consultoria em Engenharia Estrutural (Contrato Hydros 035037300CGB018), partes integrantes do Sistema de Esgotamento Sanitário do Planalto Palmeiras - Fortaleza/CE.

O Projeto Estrutural será apresentado em 1 (um) volume com tomo único:

✓ Volume I Tomo único – Memorial Descritivo, de Cálculo e Plantas
 Tomo único: Textos e peças gráficas

> Memorial Descritivo e de cáculo

SUMÁRIO

1 OBJETIVO	5
2 NORMAS UTILIZADAS	5
3 FORMA	5
4 ARMAÇÃO	6
5 CONCRETO	6
5.1 CONSIDERAÇÕES DE CÁLCULO	7
6 EEE PLANALTO PALMEIRAS	7
6.1 DOCUMENTOS DE REFERÊNCIA	7
6.2 MATERIAIS / PARÂMETROS	8
6.3 DIMENSIONAMENTO GEOTÉCNICO	8
6.4 GEOMETRIA DA ESTRUTURA, CARREGAMENTOS E VERIFICAÇÃO ESTRUTURAL	11
6.4.1 GEOMETRIA DA ESTRUTURA	11
6.4.2 MODELO CÁLCULO	13
6.4.3 CARREGAMENTOS	14
6.4.4 COMBINAÇÕES DE CARREGAMENTOS	14
6.4.5 DIMENSIONAMENTO DA ESTRUTURA	15
6.5 RESUMO	
7 CAIXA DE QUEBRA DE PRESSÃO	44
7.1 DOCUMENTOS DE REFERÊNCIA	44
7.2 MATERIAIS / PARÂMETROS	44
7.3 GEOMETRIA DA ESTRUTURA, CARREGAMENTOS E VERIFICAÇÃO ESTRUTURAL	44
7.3.1 GEOMETRIA DA ESTRUTURA	44
7.3.2 MODELO CÁLCULO	46
7.3.3 CARREGAMENTOS	
7.3.4 COMBINAÇÕES DE CARREGAMENTOS	48
7.3.5 DIMENSIONAMENTO DA ESTRUTURA	49
7.4 RESUMO	52
8 ART	53
9 PEÇAS GRÁFICAS	54

1 OBJETIVO

O presente documento descreve a metodologia de trabalho e reúne a Memória de Cálculo e os Desenhos do Projeto Estrutural da Estação Elevatória EEE Planalto Palmeiras e Caixa de Quebra de Pressão que compõem o Sistema de Esgotamento Sanitário de Fortaleza-CE.

2 NORMAS UTILIZADAS

O projeto estrutural foi concebido tomando como base as condições fixadas pelas normas:

- NBR 6120 (1980) Cargas para o cálculo de estruturas de edificações;
- NBR 6122 (2010) Projeto e Execução de Fundações;
- NBR 6118 (2014) Projeto e Execução de Obras de Concreto Armado;
- ACI 350R (2006) Concrete Sanitary Engineering Structures.

A estrutura de concreto armado deverá ser executada obedecendo rigorosamente ao projeto estrutural e as normas:

- NBR 5672 (Diretrizes para o Controle Tecnológico de Materiais Destinados a Estruturas de Concreto - Especificação);
- NBR 5673 (Diretrizes para o Controle Tecnológico de Processos Executivos em Estruturas de Concreto);
- NBR 6118(Projeto e Execução de Obras de Concreto Armado).

3 FORMA

- As formas deverão ser limpas, removendo concreto velho, gesso, graxa, ou outra sujeira, bem como pregos e parafusos.
- As formas deverão apresentar superfície lisa e plana, perfeita estanqueidade, rigidez, e resistência necessária para resistir aos esforços oriundos da concretagem sem apresentar deformações, vazamentos de nata ou outro efeito que venha a provocar defeitos ao concreto.
- Será aplicado sobre toda a superfície de contato com o concreto um desmoldante adequado para permitir a desforma sem provocar danos ao concreto.

 A desforma só se processará quando a estrutura tiver resistência necessária para absorver aos esforços oriundos da retirada das formas conforme estabelece o item 14.2 da NBR 6118.

 As formas para as paredes do reservatório serão do tipo trepante. Caso em fase de execução se opte por utilizar formas do tipo deslizante o projetista deverá ser consultado.

4 ARMAÇÃO

 As armaduras serão posicionadas conforme as indicações de projeto, com cobrimentos rigorosamente garantidos através de espaçadores externos de plástico ou argamassa e espaçadores internos de arame (suportes de metal) de forma a não permitir que as armaduras sejam deslocadas durante a concretagem.

 Não poderão ser empregados na obra aços de qualidades diferentes das especificadas no projeto, sem aprovação do projetista.

 As barras de aço deverão ser convenientemente limpas de qualquer substância prejudicial à sua aderência, retirando-se as escamas eventualmente destacadas pela oxidação.

• O dobramento das barras deverá ser feito respeitando-se os raios mínimos preconizados nos itens 6.3.4.1. e 6.3.4.2. da NBR 6118.

• As emendas de barras da armadura deverão ser feitos de acordo com o previsto no projeto; as não previstas deverão atender ao item 6.3.5. da NBR 6118.

5 CONCRETO

O concreto deverá ser dosado para atender a resistência característica especificada no projeto
e possuir trabalhabilidade adequada para permitir o lançamento e adensamento de forma a
não ocorrerem desagregações, nichos ou cavernas. Não será permitido o amassamento
manual do concreto.

 O concreto deverá ser lançado logo após o amassamento, não sendo permitido um intervalo maior que uma hora entre o final do amassamento e o início do lançamento. Com o uso de retardadores de pega o prazo poderá ser aumentado de acordo com as características do aditivo.

 Para placas de talude das lagoas a concretagem devem ser executada alternadamente (em xadrez).

• Em nenhuma hipótese se fará lançamento após o início da pega.

O concreto deverá ser transportado do local de seu amassamento até o local de lançamento

sem que acarrete segregação ou desagregação de seus elementos ou perda sensível de

qualquer um deles por vazamento ou evaporação.

Quando o lançamento do concreto for interrompido e, assim, formar-se uma junta de

concretagem, deverão ser tomadas as precauções necessárias para garantir, ao reiniciar-se o

lançamento, a suficiente ligação do concreto já endurecido com o novo trecho. Antes de

reiniciar-se o lançamento, deverá ser removida a nata e saturada a superfície da emenda.

Enquanto não atingir o endurecimento satisfatório, o concreto deverá ser protegido contra

agentes prejudiciais, tais como, mudanças bruscas de temperatura, secagem, chuva forte,

águas torrenciais, agentes químicos, bem como contra choques e vibrações de intensidade tal

que possam provocar fissuração na massa do concreto ou prejudicar a sua aderência a

armadura.

A proteção contra a secagem prematura, pelo menos nos sete primeiros dias após o

lançamento do concreto, poderá ser feita mantendo umedecida a superfície ou protegendo-a

com uma película impermeável.

O concreto deverá ter slump alto conforme especificação em projeto.

5.1 CONSIDERAÇÕES DE CÁLCULO

a – Peso específico do material água: 1,0 tf/m³

b – Peso específico do solo: 1,8 tf/m³

c – Peso específico do concreto armado: 2,5 tf/m³

d - Limite de deformação: L/250

6 EEE Planalto Palmeiras

6.1 DOCUMENTOS DE REFERÊNCIA

A seguir está relacionada a planta utilizada como referência para o desenvolvimento do projeto

estrutural:

01 LAY

04 EEE LOCAÇÃO E URBANIZAÇÃO

05-07_EEE_HIDRÁULICO

08 EEE DETALHES

6.2 MATERIAIS / PARÂMETROS

Para a estrutura foram especificadas, de forma a garantir adequada proteção à armadura, a Classe de Agressividade Ambiental III cujas características são descritas na NBR 6118 e a seguir:

- Resistência característica do concreto fck = 30 Mpa;
- Cobrimento da armadura:
 - Cobrimento adotado:
 - o 5.0 cm: Faces de paredes, pilares e lajes
 - o 4.0 cm: Vigas
- Aço CA-50;
- Aço CA-60;

6.3 DIMENSIONAMENTO GEOTÉCNICO

São muitas as maneiras de relacionar os números de SPT obtidos na sondagem à percussão com a resistência do solo. Aqui devido a estrutura apresentar carga baixa no solo utilizaremos fórmulas empíricas expeditas:

$$\sigma_{adm} \frac{N}{5}$$

Onde o valor N é o número do SPT. Todos os resultados têm como unidade o Kgf/cm², adotou-se para o cálculo o Nspt do nível de implantação, portanto, como consequência do estudo geotécnico segue imagem abaixo.

PT COORDENADAS — ELEVAÇÕES	_
	5
NORTE ESTE EL.	
SP1.2 9575566.5500 552605.5500	-

NÍVEL 6,670

♂ max [kg/cm2]	0,57
Nspt (na implantação)	23,89
σ adm [kg/cm2]	4
Cota Implantação [m]	3,125

NÍVEL 8,050

σ max [kg/cm2]	0,43
Nspt (na implantação)	23,35
σ adm [kg/cm2]	4
Cota Implantação [m]	4,375

NÍVEL 9,550

σ max [kg/cm2]	0,57
Nspt (na implantação)	15
σ adm [kg/cm2]	3,00
Cota Implantação [m]	9,550

Figura 6.1 – Dimensionamento Geotécnico

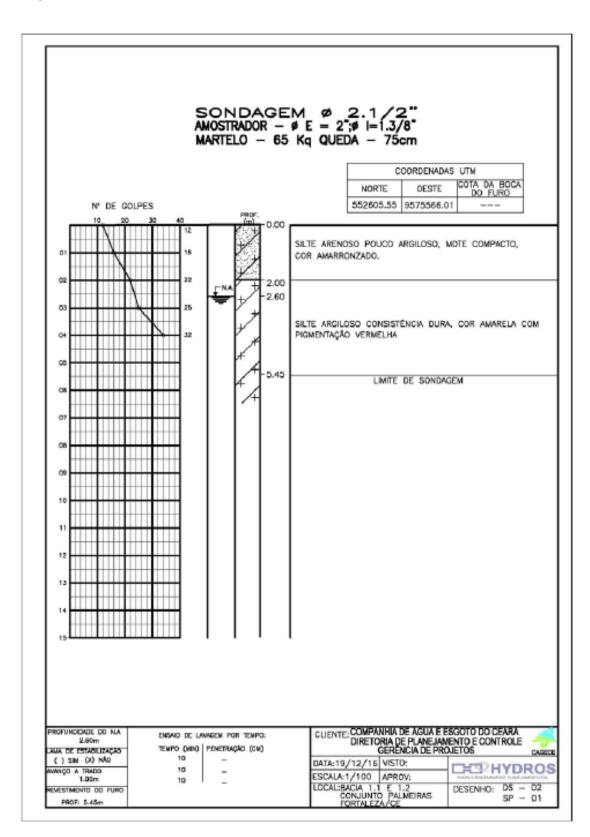


Figura 6.2 – Sondagem utilizada

6.4 GEOMETRIA DA ESTRUTURA, CARREGAMENTOS E VERIFICAÇÃO ESTRUTURAL

6.4.1 GEOMETRIA DA ESTRUTURA

As figuras a seguir apresentam informações globais da geometria da estrutura projetada apenas com o intuito de identificação da estrutura. Detalhes da geometria podem ser encontrados nas plantas de referência e de forma da estrutura de concreto.

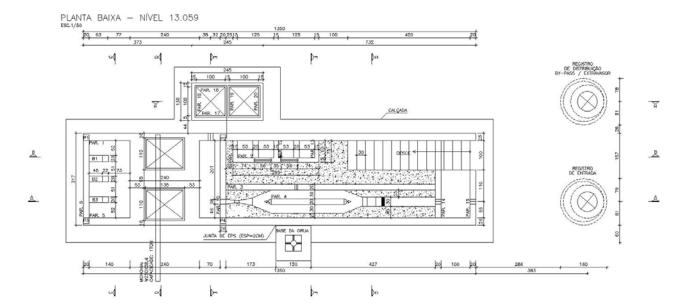


Figura 6.3 – Planta Baixa

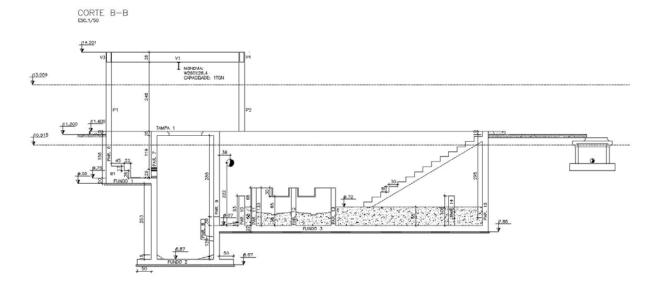


Figura 6.4 – Corte.

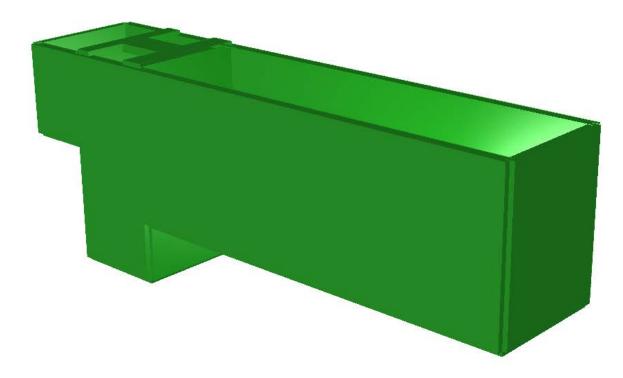


Figura 6.5 – Perspectiva STRAP

Figura 6.6 – Perspectiva TQS

6.4.2 MODELO CÁLCULO

Todas as estruturas aqui representadas foram analisadas através da modelagem em elementos finitos usando o programa de análise, STRAP. No Strap, podemos modelar usando elementos de barras, placas ou sólidos quando necessários indicando dimensões dos elementos finitos, propriedades dos materiais, geometria da estrutura e condições de contorno.

A figura a seguir apresenta o modelo de elementos finitos utilizados assim como as condições de contorno utilizadas.

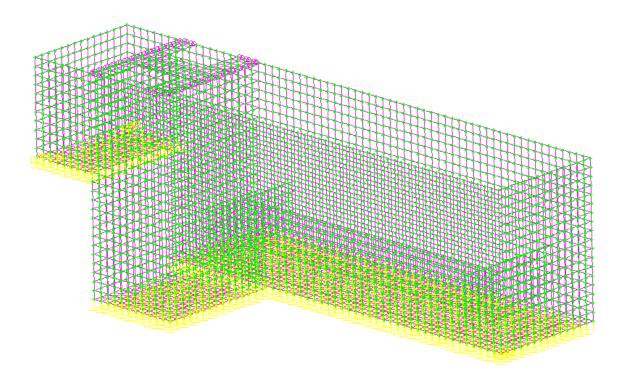


Figura 6.7 – Modelo em Elementos Finitos

6.4.3 CARREGAMENTOS

A tabela a seguir apresenta os carregamentos e os valores adotados para o modelo retirados do software:

	LOAD CASES LIST			
no.	no. in results	name		
1	1	PP		
2	2	SC		
3	3	PRESSAO HIDROSTATICA 1		
4	4	PRESSAO HIDROSTATICA 2		
5	5	FMPUXO DF SOLO		
6	6	ENCHIMENTO		

- O peso próprio é determinado automaticamente pelo programa através da multiplicação do peso específico do concreto armado e espessura do elemento estrutural plano (paredes e lajes);
- 2. O empuxo de água é determinado em função da lâmina d'àgua presente na caixa.
- 3. A sobrecarga é um carregamento de 2 KN/m² atuando sobre a laje.

6.4.4 COMBINAÇÕES DE CARREGAMENTOS

A lista a seguir apresenta a combinação dos carregamentos utilizada com coeficientes 1,0. Os coeficientes de majoração e de combinação serão inclusos nas próprias planilhas de cálculo.

COMBINATIONS TABLE					
Comb	Comh				
1	1 * 1.00 + 6 * 1.00				
2	1 * 1.00 + 3 * 1.00 + 6 * 1.00				
3	1 * 1.00 + 4 * 1.00 + 6 * 1.00				
4	1 * 1.00 + 5 * 1.00 + 6 * 1.00				
5	1 * 1.00 + 6 * 1.00				
6	1 * 1.00 + 2 * 1.00 + 6 * 1.00				
7	1 * 1.00 + 3 * 1.00 + 4 * 1.00 + 6 * 1.00				
8	1 * 1.00 + 2 * 1.00 + 3 * 1.00 + 4 * 1.00 + 6 * 1.00				
9	1 * 1.00 + 2 * 1.00 + 5 * 1.00 + 6 * 1.00				
10	1 * 1.00 + 2 * 1.00 + 3 * 1.00 + 4 * 1.00 + 5 * 1.00 + 6 * 1.00				

Coeficientes de minoração são utilizados para os materiais empregados e relação em módulos de elasticidade para cálculo de fissuração:

COEFICIENTES DE MINORAÇÃO DAS RESISTÊNCIAS/\[\si

g _c =	1.4	Es/Ec _{fissuração} =	15
g _s =	1.15	Es/Ec fadiga =	10

6.4.4.1 VERIFICAÇÃO SEGUNDO A NBR 6118 (Estado Limite Último)

Para a verificação da ruptura dos elementos estruturais utiliza-se a formulação proposta pela ABNT NBR 8681 (2003).

$$F_{d} \sum_{i1}^{m} \gamma_{gi} F_{gik} \ \gamma_{q} F_{q1k} \sum_{i2}^{n} \psi_{0j} F_{qjk}$$
 (6.1)

Devido o caráter de ocorrência "permanente" das cargas variáveis como, por exemplo, água, tomouse para o ELU o coeficiente 1,4 para todas as ações sem a utilização dos fatores redutores de combinação.

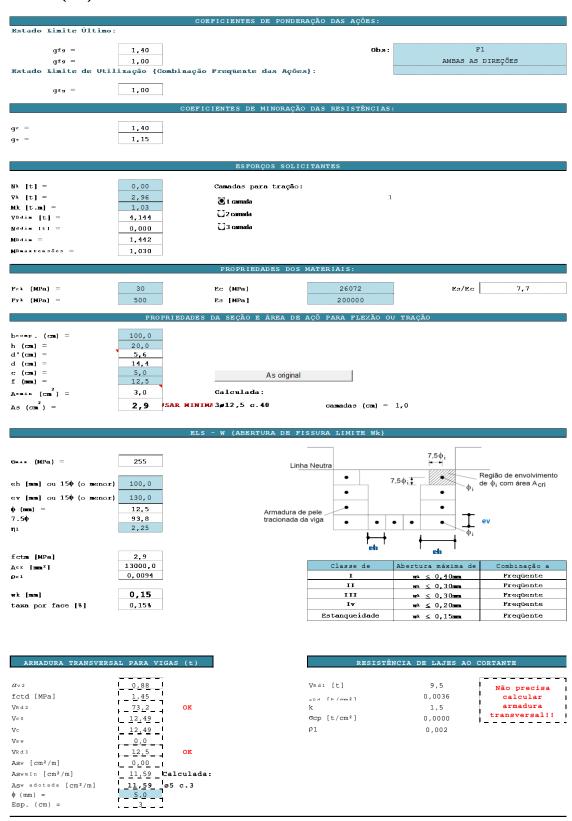
6.4.4.2 VERIFICAÇÃO SEGUNDO A NBR 6118 (Estado Limite de Utilização)

A NBR 6118 (2003) sugere que a verificação para a fissuração seja feita pela Combinação Frequente das Ações.

$$F_{d,ser} = \sum_{i=1}^{m} F_{gik} + \psi_1 F_{q1k} + \sum_{j=2}^{m} \psi_{2j} F_{qjk}$$
(6.2)

Devido o caráter de ocorrência "permanente" das cargas variáveis como, por exemplo, água, tomouse para o ELS o coeficiente 1,0 para todas as ações sem a utilização dos fatores redutores de combinação.

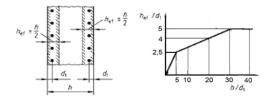
6.4.5 DIMENSIONAMENTO DA ESTRUTURA


6.4.5.1 ANÁLISE E DIMENSIONAMENTO DA ESTRUTURA

São apresentados a seguir alguns os esforços que devem ser analisados para a estrutura em questão. Será apresentado o dimensionamento dos elementos principais da estrutura.

6.4.5.1.1 FUNDO 01

Armadura de retração em peças espessas (DIN EN 1992-1-1:2011)


NBR 6118 2003 item 17.3.5.2.2 (valores mínimos para armadura de tração sob deformação impostas) e DIN EN 1992-1-1:2011

Expressão segundo NBR:

 $AS = k k_c f_{ct,ef} A_{ct}/\sigma_s$

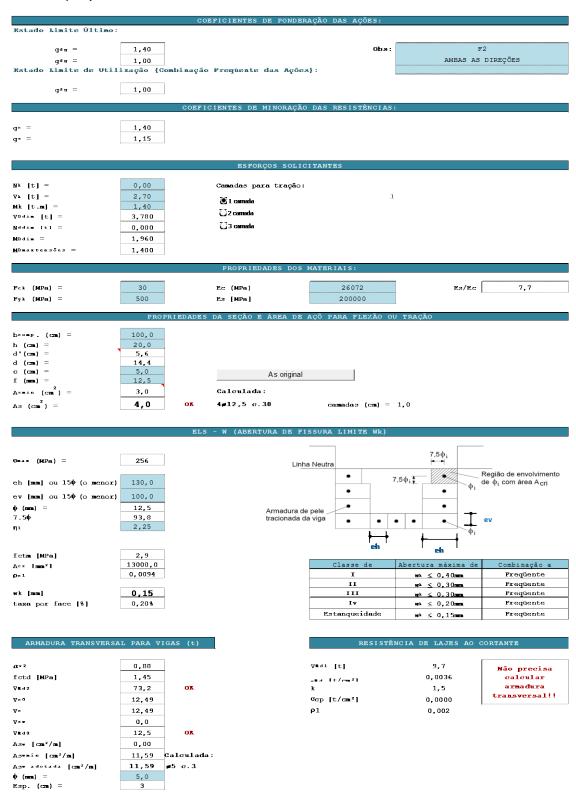
- * $A_{c,ef}$ = h_{ef} . 100 (em cm²), e A_{ct} = 0,5.h. 100 (em cm²);
- * h = espessura da peça;
- * σs é a tensão admissível na armadura para limitação da abertura das fissuras.

Dados de er	ntrada:		
fck [MPa]	30	f _{ct,ef [MPa]} 3,00 Caso 1	
d1 [cm]	6,0	σ s [MPa] 256 ⊙ Caso 2	
h [cm]	20,0	Act/face 1000 Caso 3	
wk [mm]	0,15	fyk [MPa] 500	
Ø [mm]	12,5	fct,m [MPa] 2,90	

Expressão segundo NBR:

$AS = k k_c$	$f_{\rm ct,ef}$ $A_{\rm ct}/\sigma_{\rm s}$	Kc =	1,0
As [cm²/m]	9,4	Para tração	pura:
esp [cm]	13	K = 0	, 8

Determinaçã	o de As:	Determinação de As min:
h/d1 [cm]	3,3333	
N°[cm]	1,67	
hef[cm]	10	As [cm²/m] 4,80
As [cm ² /m]	11,72	


Armadura adotada para fundo:

F1		
AMBAS AS DIREÇÕES		
As	3ø12,5 c.40	ø12,5 c.12**

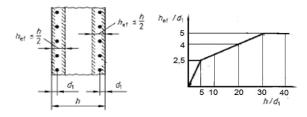
6.4.5.1.2 FUNDO 02

Armadura de retração em peças espessas (DIN EN 1992-1-1:2011)

NBR 6118 2003 item 17.3.5.2.2 (valores mínimos para armadura de tração sob deformação impostas) e DIN EN 1992-1-1:2011

Expressão segundo NBR:

 $A_S = k k_c f_{ct,ef} A_{ct}/\sigma_s$


Expressão segundo a DIN:

Valor mínimo (DIN):

 $A_s = f_{ct,ef} A_{c,ef} / \sigma_s$

 A_s = k. $f_{ct,ef}$. A_{ct}/f_{yk}

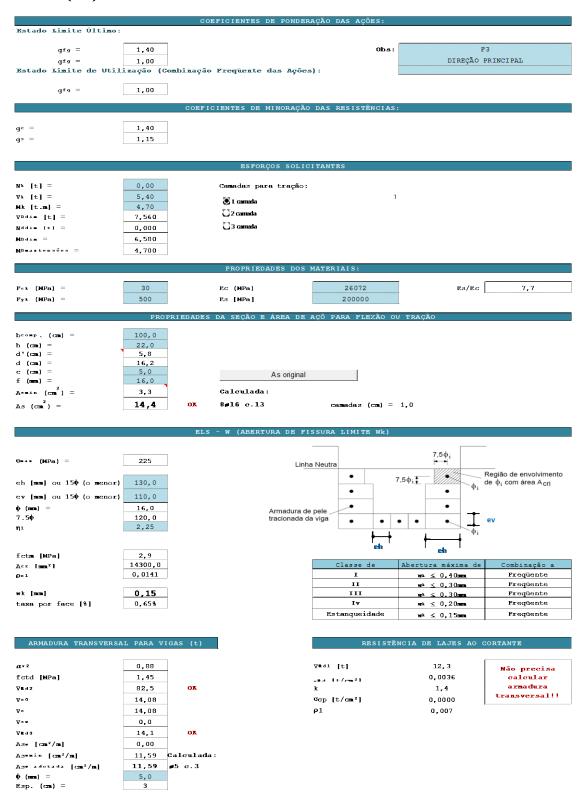
- * $A_{\rm c,ef} = h_{\rm ef}$. 100 (em cm²), e $A_{\rm ct} =$ 0,5.h. 100 (em cm²);
- * h = espessura da peça;
- * σ s é a tensão admissível na armadura para limitação da abertura das fissuras

Dados de er	ntrada:				
fck [MPa]	30	f _{ct,ef [MPa]}	3,00	Caso 1	
d1 [cm]	6,0	$\sigma_{s [exttt{MPa}]}$	256	Caso 2	
h [cm]	20,0	Act/face	1000	Caso 3	
wk [mm]	0,15	fyk [MPa]	500		
Ø [mm]	12,5	fct,m [MPa]	2,90		

Expressão segundo NBR:

$A_S = k k_C$	$f_{\rm ct,ef}$ $A_{\rm ct}/\sigma_{\rm s}$	Kc =	1,0
As $[cm^2/m]$	9,4	Para t	ração pura:
esp [cm]	13	K =	0,8

Determinaçã	io de As:	Determinação	de As min:
h/d1 [cm]	3,3333		
N°[cm]	1,67		
hef[cm]	10	As [cm²/m]	4,80
As $[cm^2/m]$	11,72		


Armadura adotada para fundo:

F2		
AMBAS AS DIREÇÕES		
As	4ø12,5 c.30	ø12,5 c.12**

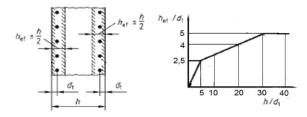
6.4.5.1.3 FUNDO 3

Armadura de retração em peças espessas (DIN EN 1992-1-1:2011)

NBR 6118 2003 item 17.3.5.2.2 (valores mínimos para armadura de tração sob deformação impostas) e DIN EN 1992-1-1:2011

Expressão segundo NBR:

 $A_S = k k_c f_{ct,ef} A_{ct}/\sigma_s$


Expressão segundo a DIN:

Valor mínimo (DIN):

 $A_s = f_{ct,ef} A_{c,ef} / \sigma_s$

 $A_s = k. f_{ct,ef}. A_{ct}/f_{yk}$

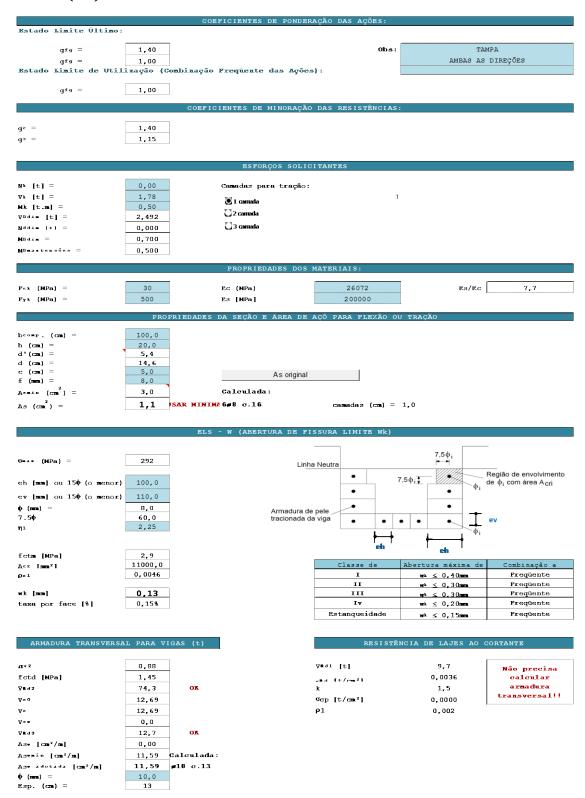
- \star $A_{c,ef} = h_{ef}$. 100 (em cm²), e $A_{ct} = 0,5.h.$ 100 (em cm²);
- * h = espessura da peça;
- * σs é a tensão admissível na armadura para limitação da abertura das fissuras.

Dados de en	ntrada:				
fck [MPa]	30	f _{ct,ef [MPa]}	3,00 -	Caso 1	
d1 [cm]	6,0	σ _{s [MPa]}	229	🖲 Caso 2	
h [cm]	22,0	Act/face	1100	Caso 3	
wk [mm]	0,15	fyk [MPa]	500		
Ø [mm]	16,0	fct,m [MPa]	2,90		

Expressão segundo NBR:

$As = k k_c$	$f_{\rm ct,ef}$ $A_{\rm ct}/\sigma_{\rm s}$	Kc =	1,0
As $[cm^2/m]$	11,5	Para tração	pura:
esp [cm]	17	K = 0	, 8

Determinaçã	io de As:	Determinação de As min:
h/d1 [cm]	3,6667	
N°[cm]	1,83	
hef[cm]	11	As [cm ² /m] 5,28
As [cm²/m]	14,41	


Armadura adotada:

F3		
DIREÇÃO PRINCIPAL		
As	8ø16 c.13	ø16 c.12

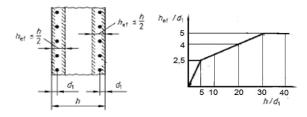
6.4.5.1.4 TAMPA

Armadura de retração em peças espessas (DIN EN 1992-1-1:2011)

NBR 6118 2003 item 17.3.5.2.2 (valores mínimos para armadura de tração sob deformação impostas) e DIN EN 1992-1-1:2011

Expressão segundo NBR:

 $A_S = k k_c f_{ct,ef} A_{ct}/\sigma_s$


Expressão segundo a DIN:

Valor mínimo (DIN):

 $A_s = f_{ct,ef} A_{c,ef} / \sigma_s$

 A_s = k. $f_{ct,ef}$. A_{ct}/f_{yk}

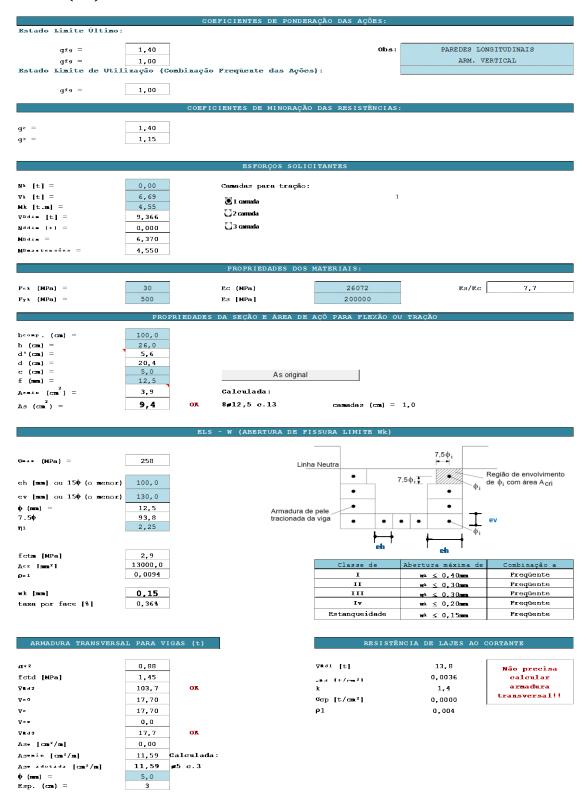
- * $A_{\rm c,ef} = h_{\rm ef}$. 100 (em cm²), e $A_{\rm ct} =$ 0,5.h. 100 (em cm²);
- * h = espessura da peça;
- * σs é a tensão admissível na armadura para limitação da abertura das fissuras.

Dados de er	ntrada:				
fck [MPa]	30	f _{ct,ef [MPa]}	3,00 -	Caso 1	
d1 [cm]	6,0	σ _{s [MPa]}	256	Caso 2	
h [cm]	20,0	Act/face	1000	Caso 3	
wk [mm]	0,15	fyk [MPa]	500		
Ø [mm]	12,5	fct,m [MPa]	2,90		

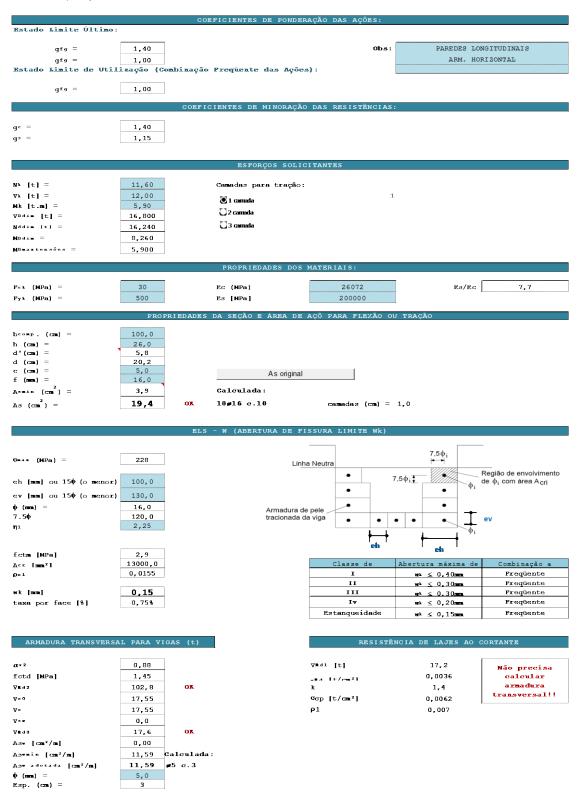
Expressão segundo NBR:

$A_S = k k_C$	$f_{\rm ct,ef}$ $A_{\rm ct}/\sigma_{\rm s}$	Kc =	1,0
As $[cm^2/m]$	9,4	Para tração	pura:
esp [cm]	13	K = (0,8

Determinaçã	o de As:	Determinação de As min:
h/d1 [cm]	3,3333	
N° [cm]	1,67	
hef[cm]	10	As $[cm^2/m]$ 4,80
As [cm ² /m]	11,72	


Armadura adotada:

TAMPA (esp=20cm) AMBAS AS DIREÇÕES		
As	6ø8 c.16	ø8 c.12

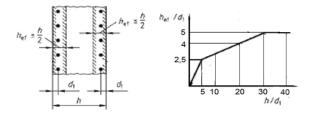


6.4.5.1.5 PAREDE LONGITUDINAL

Armadura de retração em peças espessas (DIN EN 1992-1-1:2011)

NBR 6118 2003 item 17.3.5.2.2 (valores mínimos para armadura de tração sob deformação impostas) e DIN EN 1992-1-1:2011

Expressão segundo NBR:


 $A_S = k k_c f_{ct,ef} A_{ct}/\sigma_s$

Expressão segundo a DIN: Valor mínimo (DIN):

 $A_s = f_{ct,ef} A_{c,ef} / \sigma_s$

 $A_s = k. f_{ct,ef}. A_{ct}/f_{yk}$

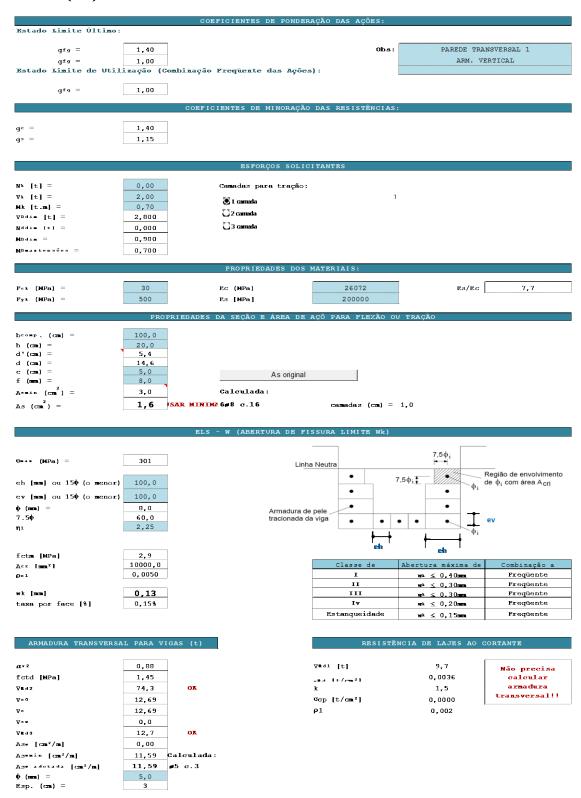
- \star $A_{c,ef} = h_{ef}$. 100 (em cm²), e $A_{ct} = 0,5.h.$ 100 (em cm²);
- * h = espessura da peça;
- * σs é a tensão admissível na armadura para limitação da abertura das fissuras.

Dados de en	ntrada:		
fck [MPa]	30	f _{ct,ef [MPa]} 3,00	Caso 1 2
d1 [cm]	6,0	σ_{s [MPa]} 256	Caso 2
h [cm]	26,0	Act/face 1300	Caso 3
wk [mm]	0,15	fyk [MPa] 500	
Ø [mm]	12,5	fct,m [MPa] 2,90	

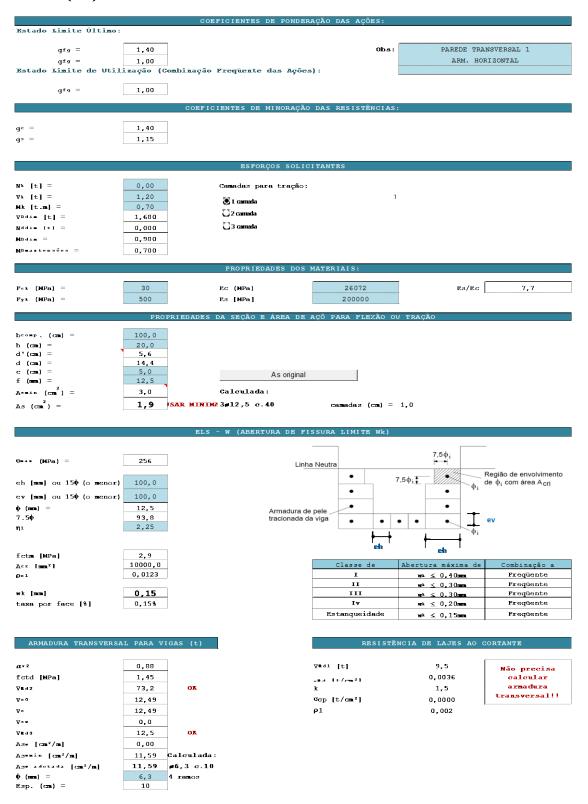
Expressão segundo NBR:

$As = k k_c$	$f_{\rm ct,ef}$ $A_{\rm ct}/\sigma_{\rm s}$	Kc =	1,0
As $[cm^2/m]$	12,2	Para tração	pura:
esp [cm]	10	K = 0	, 8

Determinaçã	io de As:	Determinação de As min:
h/d1 [cm]	4,3333	
N°[cm]	2,17	
hef[cm]	13	As [cm²/m] 6,24
As [cm²/m]	15,23	


Armadura adotada

PAR LONGITUDINAL (esp=26cm) ARM. HORIZONTAL		
As	10ø16 c.10	ø16 C.10
PAR LONGITUDINAL (esp=26cm)		
ARM VERTICAL		
As	8ø12,5 c.13	ø12,5 c.12**

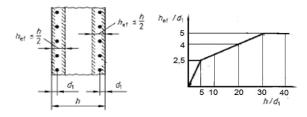


6.4.5.1.6 PAREDE TRANSVERSAL 1

Armadura de retração em peças espessas (DIN EN 1992-1-1:2011)

NBR 6118 2003 item 17.3.5.2.2 (valores mínimos para armadura de tração sob deformação impostas) e DIN EN 1992-1-1:2011

Expressão segundo NBR:


 $A_S = k k_c f_{ct,ef} A_{ct}/\sigma_s$

Expressão segundo a DIN: Valor mínimo (DIN):

 $A_s = f_{ct,ef} A_{c,ef} / \sigma_s$

 A_s = k. $f_{ct,ef}$. A_{ct}/f_{yk}

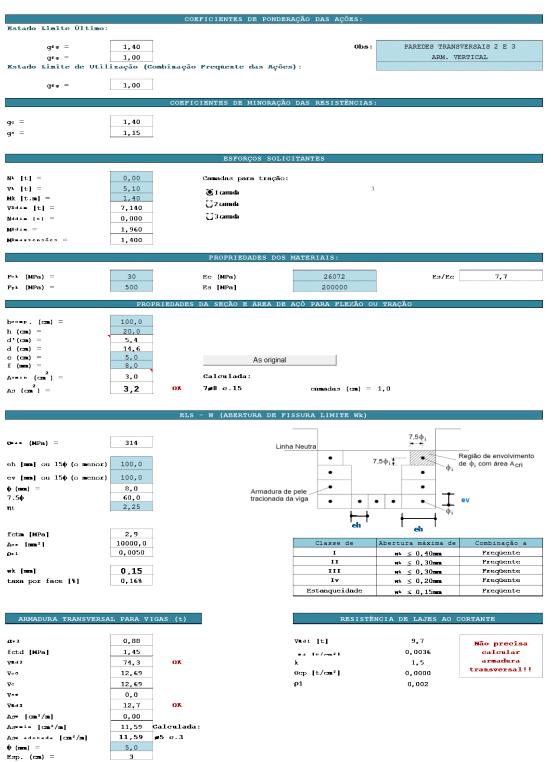
- * $A_{\rm c,ef} = h_{\rm ef}$. 100 (em cm²), e $A_{\rm ct} =$ 0,5.h. 100 (em cm²);
- * h = espessura da peça;
- * σs é a tensão admissível na armadura para limitação da abertura das fissuras.

Dados de er	ntrada:				
fck [MPa]	30	f _{ct,ef [MPa]}	3,00	Caso 1	2
d1 [cm]	6,0	σ _{s [MPa]}	256	👅 Caso 2	
h [cm]	20,0	Act/face	1000	Caso 3	
wk [mm]	0,15	fyk [MPa]	500		
Ø [mm]	12,5	fct,m [MPa]	2,90		

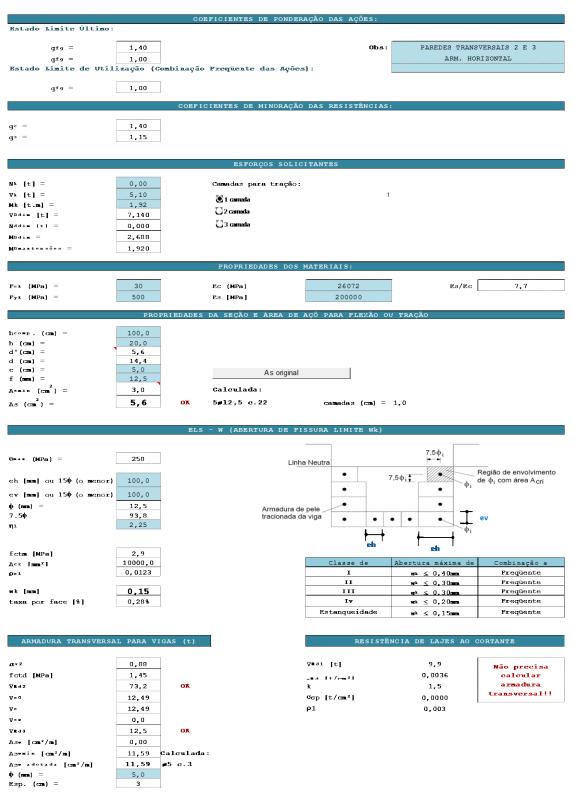
Expressão segundo NBR:

$A_S = k k_C$	$f_{\rm ct,ef}$ $A_{\rm ct}/\sigma_{\rm s}$	Kc =	1,0
As $[cm^2/m]$	9,4	Para tr	ação pura:
esp [cm]	13	K =	0,8

Determinaçã	io de As:	Determinação de As min:
h/d1 [cm]	3,3333	
N°[cm]	1,67	
hef[cm]	10	As $[cm^2/m]$ 4,80
As [cm²/m]	11,72	


Armadura adotada

PAR TRANS 1		
ARM. HORIZONTAL		
As	3ø12,5 c.40	ø12,5 C.10
PAR TRANS 1		
ARM VERTICAL		
As	6ø8 c.16	ø8 c.12

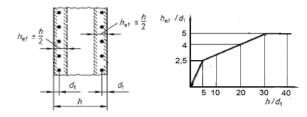


6.4.5.1.7 PAREDE TRANSVERSAL 2 E 3

Armadura de retração em peças espessas (DIN EN 1992-1-1:2011)

NBR 6118 2003 item 17.3.5.2.2 (valores mínimos para armadura de tração sob deformação impostas) e DIN EN 1992-1-1:2011

Expressão segundo NBR:


 $A_S = k k_c f_{ct,ef} A_{ct}/\sigma_s$

Expressão segundo a DIN: Valor mínimo (DIN):

As= $f_{ct,ef}$ Ac,ef/ σ_s

A_s= k. $f_{ct,ef}$. A_{ct}/f_{yk}

- * $A_{c,ef}$ = h_{ef} . 100 (em cm²), e A_{ct} = 0,5.h. 100 (em cm²);
- * h = espessura da peça;
- * σs é a tensão admissível na armadura para limitação da abertura das fissuras.

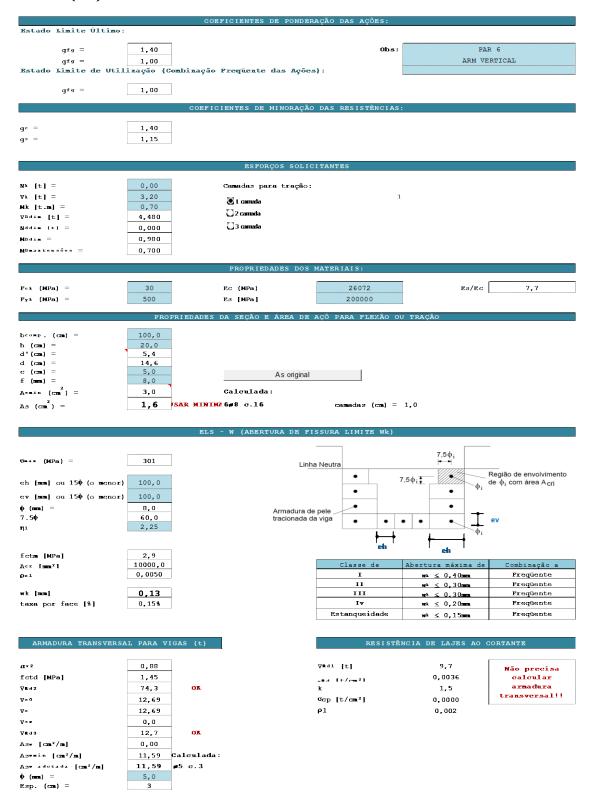
Dados de er	ntrada:				
fck [MPa]	30	f _{ct,ef [MPa]}	3,00 -	Caso 1	
d1 [cm]	6,0	σ _{s [MPa]}	256	Caso 2	
h [cm]	20,0	Act/face	1000	Caso 3	
wk [mm]	0,15	fyk [MPa]	500	_ 0	
Ø [mm]	12,5	fct,m [MPa]	2,90		

Expressão segundo NBR:

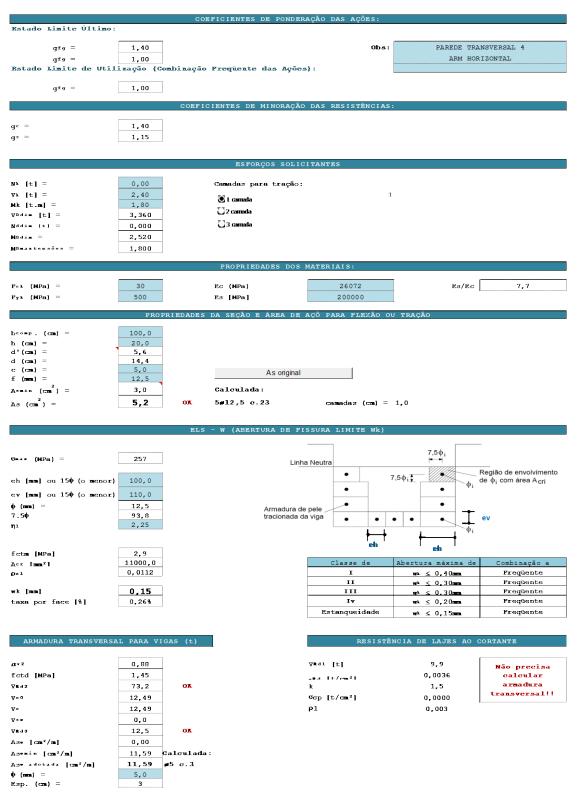
$A_S = k k_C$	$f_{\rm ct,ef}$ $A_{\rm ct}/\sigma_{\rm s}$	Kc =	1,0
As [cm²/m]	9,4	Para	tração pura:
esp [cm]	13	K =	0,8

Determinaçã	io de As:	Determinação de As min:
h/d1 [cm]	3,3333	
N°[cm]	1,67	
hef[cm]	10	As $[cm^2/m]$ 4,80
As [cm²/m]	11,72	

Armadura adotada


PAR TRANS 2 E 3		
ARM. HORIZONTAL		
As	5ø12,5 c.22	ø12,5 c.12**
PAR TRANS 2 E 3		
ARM VERTICAL		
As	7ø8 c.15	ø8 c.12

6.4.5.1.8 PAREDE TRANSVERSAL 4

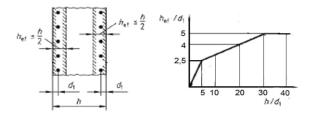

CÁLCULO DE ARMADURA DE FLEXÃO, CORTANTE E VERIFICAÇÃO DE FISSURAÇÃO NBR 6118 (2014)

CÁLCULO DE ARMADURA DE FLEXÃO, CORTANTE E VERIFICAÇÃO DE FISSURAÇÃO NBR 6118 (2014)

Armadura de retração em peças espessas (DIN EN 1992-1-1:2011)

NBR 6118 2003 item 17.3.5.2.2 (valores mínimos para armadura de tração sob deformação impostas) e DIN EN 1992-1-1:2011

Expressão segundo NBR:


 $A_S = k k_c f_{ct,ef} A_{ct}/\sigma_s$

Expressão segundo a DIN: Valor mínimo (DIN):

As= fct,ef Ac,ef/ σ_s

A_s= k. $f_{ct,ef}$. A_{ct}/f_{yk}

- * $A_{c,ef}$ = h_{ef} . 100 (em cm²), e A_{ct} = 0,5.h. 100 (em cm²);
- * h = espessura da peça;
- * σs é a tensão admissível na armadura para limitação da abertura das fissuras.

Dados de en	ntrada:				
fck [MPa]	30	f _{ct,ef [MPa]}	3,00 -	Caso 1	
d1 [cm]	6,0	σ _{s [MPa]}	256	Caso 2	
h [cm]	20,0	Act/face	1000	Caso 3	
wk [mm]	0,15	fyk [MPa]	500	_ 0	
Ø [mm]	12,5	fct,m [MPa]	2,90		

Expressão segundo NBR:

$A_S = k k_C$	$f_{\rm ct,ef}$ $A_{\rm ct}/\sigma_{\rm s}$	Kc =	1,0
As [cm²/m]	9,4	Para	tração pura:
esp [cm]	13	K =	0,8

Determinaçã	io de As:	Determinação de As min:
h/d1 [cm]	3,3333	
N°[cm]	1,67	
hef[cm]	10	As $[cm^2/m]$ 4,80
As [cm²/m]	11,72	

Armadura adotada

PAR TRANS 4		
ARM. HORIZONTAL		
As	5ø12,5 c.23	ø12,5 C.10
PAR TRANS 4		
ARM VERTICAL		
As	6ø8 c.16	ø8 c.12

6.4.5.1.9 VIGAS

A seguir são apresentados os dados e resultados do cálculo/dimensionamento das vigas:

Relatório geral de vigas

```
GEOMETRIA
Eng.E
         : Engastamento a Esquerda
: N.de Andares
                                         / Eng.D : Engastamento a Direita / Repet : Repeticoes
/ Red V Ext : Reducao de Cortante no Extremo / Fat.Alt : Fator de Alternancia de
NAnd
Cargas
                                         / TpS
                                                     : Tipo da Secao
                                                                                               : Mesa Colaborante Superior
         : Mesa Colaborante Inferior / Esp.LS
: Distancia Face Superior Eixo / FLt.Ex
                                                     : Espessura Laje Superior
                                                                                     / Esp.LI : Espessura Laje Infetior
BCi
                                                   : Distancia Face Lateral ao Eixo / Cob/S : Cobrim/Cobr.superior
FSp.Ex
adicional
CARGAS
MEsq : Momento Adicional a Esquerda
                                         / MDir : Momento Adicional a Direita
                                                                                    / O : Cortante Adicional (valor
unico)
ARMADURAS -
SRAS : Secao Retangular Armad.Simples
STAD : Secao Te Armadura Dupla
                                         / SRAD : Secao Retangular Armad.Dupla
                                                                                     / STAS : Secao Te Armadura Simples
                                                 : Profund. relativa da Linha Neutra / x/dMx : Profund. relativa da LN
Maxima
Ast.
                                                                                     / Asapo : Armadura e/d que chega no
      : Armadura de Compressao
                                         / Bit.de Fiss.: Bitola de fissuração
extremo
ARMADURAS - CISALHAMENTO
         Modelo de Calculo (I ou II) / Ang.
                                                  : Angulo da biela de compressao
cisalhamento
Asw[C+T]: Arm.tran.calculada cisalh+torcao / Bit
NR : Numero de ramos do estribo / AsTr
                                         / Bit : Bitola selecionada / Esp : Espacamento seleciona / AsTrt : Armadura transversal de Tirante / AsSus : Armadura transversal-
                                                                                             : Espacamento selecionado
ARMADURAS
                       T O R C A O
     : % limite de TRd2 para desprezar o M de torcao (Tsd) : Largura do nucleo
%dT
                                                                / he
                                                                 / he : Espessura do nucleo de torcao / h-nuc : Altura do nucleo
       : Armadura de torcao calculada para 1 Ramo de estribo
                                                                 / AswmnNR : Armad.transv.minima-torcao p/NR estribos
Asw-1R
Asl-b : Armadura longitudinal de torcao no lado b
ComDia : Valor da compressao diagonal (cisalhamento+torcao)
                                                               / Asl-h : Armadura longitudinal de torcao no lado h / AdPla : Capacida/ adaptacao plastica no vao - S[sim]
N[nao]
REACOES
              DE
                    APOIO
DEPEV : Distancia do eixo do pilar ao eixo efetivo de apoio -viga / Morte : Codigo se pilar morre / segue / vigas
M.I.Mx : Momento Imposto Maximo / M.I.Mn : Momento Imposto Minimo
Viga=
                                         Eng.E=Nao /Eng.D=Nao /Repet= 1 /NAnd= 1 /Red V Ext=Nao /Fat.Alt=1.00 /Cob/S=4.0
.0 CM
-----Solicitações provenientes de modelo de grelha e/ou portico espacial -----
                      - A R M A D U R A S (FLEXAO E CISALHAMENTO)
                                               FLEXAO- | E S Q U E R D A
                                                                                            DIREITA
        ESQ02...
M.[-] = .8 tf* m
As = .92 -SRAS- [ 2 B 8.0mm]
                                                                                             M.[-] =
                                                        .00 -----
                                                                                                     .93 -SRAS- [ 2 B
[tf,cm] As =
                                              AsL=
                                                                                            i As =
8.0mm]
               .00 -----
      AsL=
                                 x/d = .07
                                               | As = 3.35 -SRAS- [ 3 B 12.5mm ]
                                                                                                     .00 -----
                                                                                           | AsL=
= .07
                                               x/dMx = .50
x/dMx= .50
                                                 % Baric.Armad.= 22 ***
        % Baric.Armad.=
                        1
                                                                                             % Baric.Armad.=
[tf,cm] | M[-]Min = 66.
[cm2] | Asapo[+]= 1.12
                                                                                             M[-]Min = 66.
Asapo[+]= 1.12
                               VRd2 MdC Ang. Asw[C] Aswmin Asw[C+T] Bit Esp NR AsTrt AsSus
22.91 1 45. .0 1.7 1.7 5.0 17.5 2 .0 .0
              Xi Xf Vsd VRd2 MdC Ang.
0.- 450. 2.31 22.91 1 45.
                                                                                                      MENSAGEM
                                                    1.7
REAC. APOIO - No.
                   Maximos Minimos
                                      Largura
                                                 DEPEV Morte
                                                                 Nome
                                                                          M.I.Mx M.I.Mn
                                                                                                Pilares:
                                                              Р1
                                                                                                       0
                                                                                                              Ω
                                                  .00
                                                                                  .00
                                                                                                                      0
0
              2
                   1 653
                             1 653
                                          2.0
                                                  0.0
                                                           1 P2
                                                                          .00
                                                                                  0.0
                                                                                          2
                                                                                                 Ω
                                                                                                       Ο
                                                                                                              Ω
                                                                                                                      Ω
V2
                                         Eng.E=Nao /Eng.D=Nao /Repet= 1 /NAnd= 1 /Red V Ext=Nao /Fat.Alt=1.00 /Cob/S=4.0
.0 CM
-----Solicitacoes provenientes de modelo de grelha e/ou portico espacial ------
                       - ARMADIIRAS (FIEXAO E CISAI HAMENTO)
FLEXAO- | E S O U E R D A
                                                IMEIO DO VAO
                                                                                             M.[+] Max=
                                                                2.1 tf* m - Abcis.= 235
                                                       .00 -----
[tf,cm] As = .92 -SRAS- [ 2 B 8.0mm]
                                              AsL=
                                                                                           | M.[-]
| As =
      AsL=
             .00 -----
                                x/d = .07
                                              | As = 3.35
                                                             -SRAS- [ 3 B 12.5mm ]
                                                                                       AsL=
= .07
```


		I
<pre>% Baric.Armad.= 1 [tf,cm] M[-]Min = 66.5 [cm2] Asapo[+]= 1.12</pre>	% Baric.Armad.= 22 *** M[+]Min = 66.5	% Baric.Armad.= 1 M[-]Min = 66.5 Asapo[+]= 1.12
CISALHAMENTO- Xi Xf Vsd VRd2 MdC Ang. A [tf,cm] 0 450. 2.31 22.91 1 45.	sw[C] Aswmin Asw[C+T] Bit Esp NR AsTrt AsSus	
REAC. APOIO - No. Maximos Minimos Largura 1 1.576 1.576 .20	DEPEV Morte Nome M.I.Mx M.I.Mn .00 1 P3 .00 .00 3	Pilares:
0 2 1.653 1.653 .20	.00 1 P4 .00 .00 4	
0		
V3 Viga= 3 V3 Eng.E .0 CM	=Nao /Eng.D=Nao /Repet= 1 /NAnd= 1 /Red V Ext=	Nao /Fat.Alt=1.00 /Cob/S=4.0
G E O M E Vao= 1 /L= 2.85 /B= .15 /H= .35 /BCs= .00 [M]		00 FSp.Ex= .17 /FLt.Ex= .07
Solicitacoes provenientes de modelo de gr	elha e/ou portico espacial	
A R M A D U R	A S (FLEXAO E CISALHAM	ENTO)
	M E I O D O V A O M.[+] Max=	DIREITA M.[-] = .1 tf* m As = .79 -SRAS-[2 B
8.0mm] AsL= .00 x/d = .06 = .06	As = .82 -SRAS- [2 B 8.0mm]	AsL= .00 x/d
x/dMx = .50 $x/dMx = .50$		1
[tf,cm] M[-]Min = 66.5 [cm2] Asapo[+]= .27	M[+]Min = 66.5	 M[-]Min = 66.5 Asapo[+]= .27
		MENSAGEM
	sw[C] Aswmin Asw[C+T] Bit Esp NR AsTrt AsSus .0 1.7 1.7 5.0 17.5 2 .0 .0	
[tf,cm] 0 265. .70 22.91 1 45. REAC. APOIO - No. Maximos Minimos Largura 1 .500 .500 .20		Pilares:
[tf,cm] 0 265. .70 22.91 1 45. REAC. APOIO - No. Maximos 1.500 Minimos 2.20 Largura 2.20 0 2 .500 .500 .20	.0 1.7 1.7 5.0 17.5 2 .0 .0 DEPEV Morte Nome M.I.Mx M.I.Mn	Pilares: 0 0 0 0
[tf,cm] 0 265. .70 22.91 1 45. REAC. APOIO - No. Maximos Minimos Largura 1 .500 .500 .20	.0 1.7 1.7 5.0 17.5 2 .0 .0 DEPEV Morte Nome M.I.Mx M.I.Mn .00 1 P3 .00 .00 3	Pilares: 0 0 0 0
[tf,cm] 0 26570 22.91 1 45. REAC. APOIO - No. Maximos Minimos Largura 1 .500 .500 .20 0 2 .500 .500 .20 V4	.0 1.7 1.7 5.0 17.5 2 .0 .0 DEPEV Morte Nome M.I.Mx M.I.Mn .00 1 P3 .00 .00 3	Pilares: 0 0 0 0 . 0 0 0
[tf,cm] 0 26570 22.91 1 45. REAC. APOIO - No. Maximos Minimos Largura 1 .500 .500 .20 0 2 .500 .500 .20 V4 Viga= 4 V4 Eng.E	.0 1.7 1.7 5.0 17.5 2 .0 .0 DEPEV Morte Nome M.I.Mx M.I.Mn .00 1 P3 .00 .00 3 .00 1 P1 .00 .00 1 =Nao /Eng.D=Nao /Repet= 1 /Nand= 1 /Red V Ext=	Pilares: 0 0 0 0 0 0 0 0 0
[tf,cm] 0 26570 22.91 1 45. REAC. APOIO - No. Maximos Minimos Largura 1 .500 .500 .20 0 .20 .500 .500 .20 V4 Viga= 4 V4	.0 1.7 1.7 5.0 17.5 2 .0 .0 DEPEV Morte Nome M.I.Mx M.I.Mn .00 1 P3 .00 .00 3 .00 1 P1 .00 .00 1 =Nao /Eng.D=Nao /Repet= 1 /NAnd= 1 /Red V Ext= T R I A E C A R G A S - /BCi= .00 /TpS= 1 /Esp.LS= .00 /Esp.Li= .	Pilares: 0 0 0 0 0 0 0 0 0
[tf,cm] 0 265. .70 22.91 1 45. REAC. APOIO - No. Maximos Minimos Largura 1 .500 .500 .20 0 2 .500 .500 .20 0 2 .500 .500 .20 V4 Viga= 4 V4 Eng.E .0 CM .0 CM G E O M E Vao= 1 /L= 2.85 /B= .15 /H= .35 /BCs= .00 [M] Solicitacoes provenientes de modelo de gradador	.0 1.7 1.7 5.0 17.5 2 .0 .0 DEPEV Morte Nome M.I.Mx M.I.Mn .00 1 P3 .00 .00 3 .00 1 P1 .00 .00 1 =Nao /Eng.D=Nao /Repet= 1 /NAnd= 1 /Red V Ext= T R I A E C A R G A S - /BCi= .00 /TpS= 1 /Esp.LS= .00 /Esp.Li= .	Pilares: 0
[tf,cm] 0 26570 22.91 1 45. REAC. APOIO - No. Maximos Minimos Largura 1 .500 .500 .20 0 2 .500 .500 .20 V4 Viga= 4 V4 Eng.E .0 CM	.0 1.7 1.7 5.0 17.5 2 .0 .0 DEPEV Morte Nome M.I.Mx M.I.Mx .00 1 P3 .00 .00 3 .00 1 P1 .00 .00 1 =Nao /Eng.D=Nao /Repet= 1 /NAnd= 1 /Red V Ext= T R I A E C A R G A S - /BCi= .00 /TpS= 1 /Esp.LS= .00 /Esp.LI= .00 elha e/ou portico espacial	Pilares: 0
The content of the	DEPEV Morte Nome M.I.Mx M.I.Mn .00 1 P3 .00 .00 3 .00 1 P1 .00 .00 1 =Nao /Eng.D=Nao /Repet= 1 /NAnd= 1 /Red V Ext= T R I A E C A R G A S - /BCi= .00 /TpS= 1 /Esp.LS= .00 /Esp.LI= . elha e/ou portico espacial A S (F L E X A O E C I S A L H A M M E I O D O V A O M.[+] Max= .3 tf* m - Abcis.= 142	Pilares: 0
[tf,cm] 0 265. .70 22.91 1 45. REAC. APOIO - No. Maximos Minimos Largura 1 .500 .500 .20 0 2 .500 .500 .20 0 2 .500 .500 .20 0 2 .500 .500 .20 0 2 .500 .500 .20 0 2 .500 .500 .20 0 2 .500 .500 .20 V4 2 2 .500 .20 V3 2 .500 .500 .20 CM 2 .500 .500 .20 CM 2 .500 .500 .20 CM 3 .500 .500 .20 CM 4 .500 .500 .20 CM 4 .500 .500 .500 .500 CM 5 .500 .500 .500 .500 .500 CM 6 6 .500 .500 .500 .500 .500 .500 CM 7 .500 .500 .500 .500 .500 </td <td>DEPEV Morte Nome M.I.Mx M.I.Mn .00 1 P3 .00 .00 3 .00 1 P1 .00 .00 1 =Nao /Eng.D=Nao /Repet= 1 /NAnd= 1 /Red V Ext= T R I A E C A R G A S - /BCi= .00 /TpS= 1 /Esp.LS= .00 /Esp.LI= .00 elha e/ou portico espacial A S (F L E X A O E C I S A L H A M M E I O D O V A O M.[+] Max= .3 tf* m - Abcis.= 142 A SL= .00</td> <td>Pilares: 0 0 0 0 0 0 0 0 0 Nao /Fat.Alt=1.00 /Cob/S=4.0 00 FSp.Ex= .17 /FLt.Ex= .07 E N T O) D I R E I T A M.[-] = .1 tf* m As = .79 -SRAS-[2 B</td>	DEPEV Morte Nome M.I.Mx M.I.Mn .00 1 P3 .00 .00 3 .00 1 P1 .00 .00 1 =Nao /Eng.D=Nao /Repet= 1 /NAnd= 1 /Red V Ext= T R I A E C A R G A S - /BCi= .00 /TpS= 1 /Esp.LS= .00 /Esp.LI= .00 elha e/ou portico espacial A S (F L E X A O E C I S A L H A M M E I O D O V A O M.[+] Max= .3 tf* m - Abcis.= 142 A SL= .00	Pilares: 0 0 0 0 0 0 0 0 0 Nao /Fat.Alt=1.00 /Cob/S=4.0 00 FSp.Ex= .17 /FLt.Ex= .07 E N T O) D I R E I T A M.[-] = .1 tf* m As = .79 -SRAS-[2 B
The content of the	DEPEV Morte Nome M.I.Mx M.I.Mn .00 1 P3 .00 .00 3 .00 1 P1 .00 .00 1 =Nao /Eng.D=Nao /Repet= 1 /NAnd= 1 /Red V Ext= T R I A E C A R G A S - /BCi= .00 /TpS= 1 /Esp.LS= .00 /Esp.LI= .00 elha e/ou portico espacial A S (F L E X A O E C I S A L H A M M E I O D O V A O M.[+] Max= .3 tf* m - Abcis.= 142 A SL= .00	Pilares: 0 0 0 0 0 0 0 0 0 Nao /Fat.Alt=1.00 /Cob/S=4.0 00 FSp.Ex= .17 /FLt.Ex= .07 E N T O) D I R E I T A M.[-] = .1 tf* m As = .79 -SRAS-[2 B
The content of the	DEPEV Morte Nome M.I.Mx M.I.Mn .00 1 P3 .00 .00 3 .00 1 P1 .00 .00 1 =Nao /Eng.D=Nao /Repet= 1 /NAnd= 1 /Red V Ext= T R I A E C A R G A S - /BCi= .00 /TpS= 1 /Esp.LS= .00 /Esp.LI= . elha e/ou portico espacial A S (F L E X A O E C I S A L H A M M E I O D O V A O M.[+] Max= .3 tf* m - Abcis.= 142 As = .82 -SRAS- [2 B 8.0mm]	Pilares: 0
[tf,cm] 0 265. .70 22.91 1 45. REAC. APOIO - No. Maximos Minimos Largura 1 .500 .500 .20 0 2 .500 .500 .20 0 2 .500 .500 .20 0 2 .500 .500 .20 0 2 .500 .500 .20 0 2 .500 .500 .20 0 2 .500 .500 .20 0 2 .500 .500 .20 0 2 .500 .500 .20 0 2 .50 .00 .00 .00	DEPEV Morte Nome M.I.Mx M.I.Mn .00 1 P3 .00 .00 3 .00 1 P1 .00 .00 1 =Nao /Eng.D=Nao /Repet= 1 /NAnd= 1 /Red V Ext= T R I A E C A R G A S - /BCi= .00 /TpS= 1 /Esp.LS= .00 /Esp.LI= . elha e/ou portico espacial A S (F L E X A O E C I S A L H A M M E I O D O V A O M.[+] Max= .3 tf* m - Abcis.= 142 AsL= .00 As = .82 -SRAS- [2 B 8.0mm] M[+]Min = 66.5 sw[C] Aswmin Asw[C+T] Bit Esp NR AsTrt AsSus .0 1.7 1.7 5.0 17.5 2 .0 .00 DEPEV Morte Nome M.I.Mx M.I.Mn	Pilares: 0
The content of the	DEPEV Morte Nome M.I.Mx M.I.Mn .00 1 P3 .00 .00 3 .00 1 P1 .00 .00 1 =Nao /Eng.D=Nao /Repet= 1 /NAnd= 1 /Red V Ext= T R I A E C A R G A S - /BCi= .00 /TpS= 1 /Esp.LS= .00 /Esp.LI= . elha e/ou portico espacial A S (F L E X A O E C I S A L H A M M E I O D O V A O M.[+] Max= .3 tf* m - Abcis.= 142 As = .82 -SRAS- [2 B 8.0mm] M[+]Min = 66.5 sw[C] Aswmin Asw[C+T] Bit Esp NR AsTrt AsSus .0 1.7 1.7 5.0 17.5 2 .0 .0	Pilares: 0

6.4.5.1.10 PILARES

Montagem de carregamentos de pilares Legenda

```
**Nota A**
Os valores apresentados equivalem a carregamentos de esforços finais de cálculo para o dimensionamento após a envoltória.
**Legenda**
FDzT = FORCA NORMAL DE CALCULO PARA DIMENSIONAMENTO DE ARMADURAS NA SECAO
MaxT = MOMENTO DE CALCULO P/DIMENSIONAMENTO DE ARMADURAS NA SECAO, MOMENTO X
MdyT = MOMENTO DE CALCULO P/DIMENSIONAMENTO DE ARMADURAS NA SECAO, MOMENTO Y
CARR = NÚMERO DO CARREGAMENTO NA ENVOLTÓRIA
COMB = NÚMERO DA COMBINAÇÃO DE ORIGEM DO CARREGAMENTO
LANCE: 1
CARREGAMENTOS DE ESFORCOS FINAIS DE CALCULO PARA DIMENSIONAMENTO APOS A ENVOLTORIA
CARR
              1
3.3
                            3.3
FdzT
MdxT
              11.9
                            -6 9
MdyT
COMB
P2
LANCE: 1
CARREGAMENTOS DE ESFORCOS FINAIS DE CALCULO PARA DIMENSIONAMENTO APOS A ENVOLTORIA
CARR
                 1
                               2
               3.4
                             3.4
              11.9
MdxT
                             -7.2
            -108.2
                            52.9
MdyT
COMB
                              1)
LANCE:
CARREGAMENTOS DE ESFORCOS FINAIS DE CALCULO PARA DIMENSIONAMENTO APOS A ENVOLTORIA
CARR
             3.3
                               2
                            3.3
FdzT
             -11.9
MdxT
                             6.9
MdvT
            107.0
                           -54.2
LANCE:
CARREGAMENTOS DE ESFORCOS FINAIS DE CALCULO PARA DIMENSIONAMENTO APOS A ENVOLTORIA
CARR
              3.4
                            3.4
FdzT
                            52.9
MdyT
            -108.2
             (1)
Listagem de resultados por pilar
Legenda
**Nota A**
```

Este carregamnto listado é, dentre os inúmeros carregamentos analisados, o que provocou a seleção desta armadura em primeiro Este carregamento listado é, dentre os inúmeros carregamentos analisados, o que provocou a seleção desta armadura em primeiro lugar. Não necessariamente, este carregamento é o que necessita a maior quantidade de armadura na seção, pois o dimensionamento é feito de forma indireta, por verificação. Exemplificando, temos duas configurações de armaduras válidas para o lance, uma correspondendo a 17 cm2 e outra a 20 cm2. Um carregamento inicial necessitou de 18 cm2 e, por esta razão foi selecionada a configuração de 20 cm2 como a definitiva. Outros carregamentos posteriores necessitaram, por exemplo, de 19 cm2, 19.5 cm2 (sempre inferiores aos 20 cm2), mas a listagem com o carregamento mais desfavorável foi feita com aquele que necessitou os 18 cm2, pois foi o primeiro a requisitar os 20 cm2. A pesquisa do carregamento exato que provoca maior armadura na seção não é realizada automaticamente para não aumentar de forma significativa o tempo de processamento. Se o usuário quiser calcular a real necessidade de armadura para um carregamento específico, ele poderá fazê-lo facilmente no Editor de Fesforces e Armaduras comando, do próprio Cad Reliar. Esforços e Armaduras, comando do próprio Cad/Pilar.

Este carregamnto listado é, dentre os inúmeros carregamentos analisados, o que provocou a seleção desta armadura em primeiro lugar. Não necessariamente, este carregamento é o que necessita a maior quantidade de armadura na seção, poiso dmensionamento é feito de forma indireta, por verificação. Exemplificando, temos duas configurações de armaduras válidas para o lance, uma correspondendo a 17 cm2 e outra a 20 cm2 Um carregamento inicial necessitou de 18 cm2 e, por esta razão foi selecionada aconfiguração de 20 cm2 como a definitiva. Outros carregamentos posteriores necessitaram, por exemplo, de 19 cm2, 19.5 cm2 (sempre inferiores aos 20 cm2), mas a listagem com o carregamento mais desfavorável foi feita com aquele que necessitou os 18 cm2, pois foi o primeiro a requisitar os 20 cm2. A pesquisa do carregamento exato que provoca maior armadura na seção não é realizada automaticamente para não aumentar de forma significativa o tempo de processamento. Se o usuário quiser calcular a real necessidade de armadura para um carregamento específico, ele poderá fazê-lo facilmente no Editor de Esforços e real necessidade de armadura para um Armaduras, comando do próprio Cad/Pilar.

```
**Legenda**
```

SEL = Quantidade Efetiva de Barras na Secao Nb = Quantidades de Barras Dimensionadas na Secao

NbH = Numero de Barras lado H NbB = Numero de Barras lado B

٠.							+		Calculo do Dime	
ANCE B(cm) H(cm) ROS										
COBERTURA								1	1	1
1 20.0 20.0 .8										107.0
	12.5 6.3	4 2	0	4.91 1.2	2.42		1	CASO PÓRT	ICO = 9 (COMB	INAÇÃO= 1
	16.0 6.3	4 2	0	8.04 2.0	2.42		1	**VER NOT	A (A)**	
	20.0 6.3	4 2	0 1	2.57 3.1	2.39		1			
	25.0 8.0	4 2	0 1	9.63 4.9	2.36		1			
VALORES CÁLCULOS DEI	FINIDOS ARQUIVO	O CRITÉR	IOS							
Cobrimento[cm] fo	ck[MPa] GamaAço	o GamaC	oncreto	AsMax[%] AsM:	in[%] G	mapN Gmap	M GmavN Gma	vm	
5.0	30.0 1.15	1	.40	8.00	. 40)	1.40 1.4	0 1.40 1.	40	
TipoAço ClasseAço	ExcMin ExcMax	k K12	K37							
50 A	2.0 15.0	1	1							
Fundacao					1		1			
	••	·	·		I-		•		•	•
LAR:P2								Feforco de	Calculo do Dime	ngionamento
							+			
NCE B(cm) H(cm) ROS f,cm)	SEL BITL BITE	Nb NbH	NbB AS	(cm) RO	ASnec	LBDALM	LAMBDA	FNd (tf)	Mxd (tf,cm)	Myd
	••	··_	··_						•	
COBERTURA										
									11.9	-108.2
	12.5 6.3	4 2	0	4.91 1.2	2.47		1	CASO PÓRT	ICO = 9 (COMB	INAÇÃO= 1
	16.0 6.3	4 2	0	8.04 2.0	2.44		1	**VER NOT	A (A)**	
	20.0 6.3	4 2	0 1	2.57 3.1	2.44		1			
	25.0 8.0	4 2	0 1	9.63 4.9	2.39		1			
	FINIDOS ARQUIVO	O CRITÉR	IOS							
VALORES CALCULOS DEI										
Cobrimento[cm] for	ck[MPa] GamaAço	o GamaC	oncreto	AsMax[%] AsM:	in[%] G	mapN Gmap	M GmavN Gma	vm	
	ck[MPa] GamaAço							M GmavN Gma		
Cobrimento[cm] fo	30.0 1.15	1	.40							
Cobrimento[cm] for 5.0 TipoAço ClasseAço	30.0 1.15	1 k K12	.40 K37							
Cobrimento[cm] fo 5.0 TipoAço ClasseAço 50 A	30.0 1.15 ExcMin ExcMax	1 k K12	.40 K37							
Cobrimento[cm] for 5.0 TipoAço ClasseAço	30.0 1.15 ExcMin ExcMax	1 k K12	.40 K37							
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao	30.0 1.15 ExcMin ExcMax	1 k K12	.40 K37							_• <u></u>
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao	30.0 1.15 ExcMin ExcMax 2.0 15.0	1 x K12 1	.40 K37 1	8.00	. 40) :	1.40 1.4	0 1.40 1.	40 	
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao LAR:P3 um. 3	30.0 1.15 ExcMin ExcMax 2.0 15.0	1 x K12 1	.40 K37 1	8.00	. 40			0 1.40 1.	40 Calculo do Dime	
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao	30.0 1.15 ExcMin ExcMax 2.0 15.0 SEL BITL BITE	1 1 1 1 1 1	.40 K37 1	8.00	.4(LBDALM	1.40 1.4	0 1.40 1.	40 Calculo do Dime	
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao	30.0 1.15 ExcMin ExcMax 2.0 15.0	1 1 1 1 1 1	.40 K37 1	8.00	.4(LBDALM		0 1.40 1.	40 Calculo do Dime	
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao	30.0 1.15 ExcMin ExcMan 2.0 15.0	1 1 1 1 Nb NbH	.40 K37 1	8.00	.4(LBDALM	1.40 1.4	0 1.40 1. Esforco de FNd (tf)		
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao	30.0 1.15 ExcMin ExcMan 2.0 15.0	1 x K12 1 Nb NbH 4 2	.40 K37 1 Nbb As 0	8.00	.4(LBDALM 41.9	1.40 1.4	Esforco de		Myd
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao LAR:P3 LAR:P3 LMCE B(cm) H(cm) ROS f,cm) COBERTURA	30.0 1.15 ExcMin ExcMax 2.0 15.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.40 K37 1	8.00	.4(LBDALM 41.9	1.40 1.4 + LAMBDA	Esforco de FNd (tf)	Calculo do Dime Mxd (tf,cm)11.9 ICO = 9 (COMB	Myd
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao LAR:P3 LAR:P3 LMCE B(cm) H(cm) ROS f,cm) COBERTURA	30.0 1.15 EXCMIN EXCMAN 2.0 15.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.40 K37 1	8.00 (cm) RO 3.14 .8 4.91 1.2	.4(LBDALM 41.9	1.40 1.4 + LAMBDA	Esforco de	Calculo do Dime Mxd (tf,cm)11.9 ICO = 9 (COMB	Myd
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao LAR:P3 LAR:P3 LMCE B(cm) H(cm) ROS f,cm) COBERTURA	30.0 1.15 ExcMin ExcMan 2.0 15.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.40 K37 1 NbB AS 0 0 0 0 1	8.00 (cm) RO 3.14 .8 4.91 1.2 8.04 2.0 2.57 3.1	.4(LBDALM 41.9	1.40 1.4 + LAMBDA	Esforco de FNd (tf)	Calculo do Dime Mxd (tf,cm)11.9 ICO = 9 (COMB	Myd 107.0
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao LAR:P3 LAR:P3 LMCE B(cm) H(cm) ROS f,cm) COBERTURA	30.0 1.15 EXCMIN EXCMAN 2.0 15.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.40 K37 1 NbB AS 0 0 0 0 1	8.00 (cm) RO 3.14 .8 4.91 1.2 8.04 2.0 2.57 3.1	.4(LBDALM 41.9	1.40 1.4 + LAMBDA	Esforco de FNd (tf)	Calculo do Dime Mxd (tf,cm)11.9 ICO = 9 (COMB	Myd 107.0
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao	30.0 1.15 EXCMIN EXCMAN 2.0 15.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.40 K37 1	8.00 (cm) RO 3.14 .8 4.91 1.2 8.04 2.0 2.57 3.1	.4(LBDALM 41.9	1.40 1.4 + LAMBDA	Esforco de FNd (tf)	Calculo do Dime Mxd (tf,cm)11.9 ICO = 9 (COMB	Myd 107.0
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao	30.0 1.15 EXCMIN EXCMAN 2.0 15.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.40 K37 1	8.00 (cm) RO 3.14 .8 4.91 1.2 8.04 2.0 2.57 3.1 9.63 4.9	.4(LBDALM 41.9	1.40 1.4	Esforco de FNd (tf)	Calculo do Dime Mxd (tf,cm)11.9 ICO = 9 (COMB	Myd
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao	30.0 1.15 ExcMin ExcMan 2.0 15.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8.00	.4(LBDALM 41.9	1.40 1.4 LAMBDA LAMBDA 45.5	Esforco de FNd (tf)	### Calculo do Dime Calculo do Dime Calculo do Dime Calculo do Dime Mxd (tf,cm)	Myd
Cobrimento[cm] for 5.0 TipoAço ClasseAço 50 A Fundacao	30.0 1.15 EXCMIN EXCMAN 2.0 15.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.40 K37 1	8.00	.4(LBDALM 41.9	1.40 1.4 LAMBDA LAMBDA 45.5	Esforco de FNd (tf)	### Calculo do Dime Calculo do Dime Calculo do Dime Calculo do Dime Mxd (tf,cm)	Myd 107.0

	m) H(cm) ROS							 ec T.BI								Mvd
tf,cm)						·		_	·	EFFICIENT	_	(01)		cr,cm,		ny u
COBERTUR	RA .	1 1	1 1		1 1	1		1	1		1		1			1
	0.0 20.0 .8													1.9		-108.2
		12	.5 6.3	4	2 0	4.91	1.2 2	.47			CA	SO PÓRT	ICO =	9 (CO	MBINA	ÇÃO= 1
		16	.0 6.3	4	2 0	8.04	2.0 2	.44			**	VER NOT	A (A)**			
		20	0 6 3			12.57					' 		. ,			
		20	.0 6.3	4	2 0	12.57	3.1 2	.44			ı					
		25	.0 8.0	4	2 0	19.63	4.9 2	.39								
VALORES	CÁLCULOS DE	FINIDOS	ARQUIVO	CRITÉ	ÉRIOS											
Cobrime	ento[cm] f	ck[MPa]	GamaAço	Gama	Concr	eto As	Max[%]	AsMin[ß] Gm	apN Gm	apM Gm	avN Gma	vm			
5.0		30.0	1.15		1.40	8	.00	.40	1	.40 1	.40 1	.40 1.	40			
TipoAço	ClasseAço	ExcMin	ExcMax	K12	K37											
50	A	2.0	15.0	1	1											
		2.0	13.0	-	-											
Fundacad	o ·										_					
elecão de	e bitolas de	pilare	s													
egenda	: Dimensões	_		was 1	100-2											
	Nome da seç				(seça	o retang	ular)									
	 Área de co Número de 		da seção	trans	versa	1										
	: Pé-Direito	Duplo		s'x'	е 'у')										
. :	S: Sim : Área total	N: Nã de arm		ilizac	la											
xa :	: Taxa de Ar	madura	da seção													
	 Bitola do Espaçament 															
k :	: fck utiliz	ado no	lance													
	<pre>: Cobrimento : Pilar-Pare</pre>			ance (N)Não)											
				(,												
						atende o										
bd :	: Tensão de : Índice de	Cálculo Esbelte	(Carga z (Maior	Vertic Lambo	cal: Co la)	ombinaçã	.o 1 CAD	/PILAR)	(kgf/	cm2)	/D	.				
bd :	: Tensão de	Cálculo Esbelte nal Adme	(Carga z (Maior nsional	Vertic Lambo (Nsd /	cal: Co la) 'Ac*Fo	ombinaçã cd) (Car	.o 1 CAD	/PILAR)	(kgf/	cm2)	'AD/PILA	R)				
bd i OrdM LOL	: Tensão de : Índice de : Força Norm : Método uti : Efeito Loc	Cálculo Esbelte nal Adme llizado cal (15.	(Carga z (Maior nsional cálculo 8.3)	Vertic Lambo (Nsd / moment	cal: Co la) 'Ac*Fo	ombinaçã cd) (Car	.o 1 CAD	/PILAR)	(kgf/	cm2)	'AD/PILA	R)				
bd i OrdM LOL LZD	: Tensão de : Índice de : Força Norm : Método uti : Efeito Loc : Efeito Loc	Cálculo Esbelte nal Adme lizado cal (15. calizado	(Carga z (Maior nsional cálculo 8.3) (15.9.3	Vertic Lambo (Nsd / moment	cal: Co la) 'Ac*Fo to 2ªO	ombinaçã cd) (Car rdem	o 1 CAD ga Vert	/PILAR) ical: Co	(kgf/	cm2)	'AD/PILA	R)				
bd : i i OrdM : LOL : LZD : APA : URV :	: Tensão de : Índice de : Força Norm : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr	Cálculo Esbelte nal Adme lizado cal (15. calizado cão com	(Carga z (Maior nsional cálculo 8.3) (15.9.3 Rigidez Curvatur	Vertic Lambo (Nsd) moment) Kapa A	cal: Co da) / Ac*Fo co 2ªO: Aproxio	ombinaçã cd) (Car rdem mada (15 a (15.8.	o 1 CAD ga Vert .8.3.3. 3.3.2)	/PILAR) ical: Co	(kgf/	cm2)	'AD/PILA	R)				
od : i : OrdM : LOL : LZD : APA : JRV : ,M,1/R :	: Tensão de : Índice de : Força Norm : Método uti : Efeito Loc : Efeito Loc : Pilar Padr	Cálculo Esbelte mal Adme lizado cal (15. calizado cão com cão com	(Carga z (Maior nsional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao	Vertic Lambo (Nsd) moment) Kapa A	cal: Co da) / Ac*Fo co 2ªO: Aproxio	ombinaçã cd) (Car rdem mada (15 a (15.8.	o 1 CAD ga Vert .8.3.3. 3.3.2)	/PILAR) ical: Co	(kgf/	cm2)	'AD/PILA	R)				
od : i i cordM : LOL : LZD : APA : JRV : M,1/R : etGerl :	: Tensão de : Índice de : Força Norm : Método uti : Méteito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr	Cálculo Esbelte mal Adme lizado cal (15. calizado cão com cão com	(Carga z (Maior nsional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao	Vertic Lambo (Nsd) moment) Kapa A	cal: Co da) / Ac*Fo co 2ªO: Aproxio	ombinaçã cd) (Car rdem mada (15 a (15.8.	o 1 CAD ga Vert .8.3.3. 3.3.2)	/PILAR) ical: Co	(kgf/	cm2)	AD/PILA	R)				
od : DrdM : Dod : DrdM : DoL : DZD : DZD : DAPA : DJRV : M,1/R : etGerl :	: Tensão de : Índice de : Força Norm : Método uti : Méteito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr	Cálculo Esbelte mal Adme lizado cal (15. calizado cão com cão com	(Carga z (Maior nsional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao	Vertic Lambo (Nsd) moment) Kapa A	cal: Co da) / Ac*Fo co 2ªO: Aproxio	ombinaçã cd) (Car rdem mada (15 a (15.8.	o 1 CAD ga Vert .8.3.3. 3.3.2)	/PILAR) ical: Co	(kgf/	cm2)	'AD/PILA	R)		 num	: 1	 Lances:
od : i DrdM : LOL : LZD : APA : JRV : M,1/R : etGerl :	: Tensão de : Índice de : Força Norm : Método uti : Méteito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr	Cálculo Esbelte mal Adme lizado cal (15. calizado cão com cão com	(Carga z (Maior nsional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao	Vertic Lambo (Nsd) moment) Kapa A	cal: Co da) / Ac*Fo co 2ªO: Aproxio	ombinaçã cd) (Car rdem mada (15 a (15.8.	o 1 CAD ga Vert .8.3.3. 3.3.2)	/PILAR) ical: Co	(kgf/	cm2)	AD/PILA	R)		num	: 1	Lances:
od : i i CrdM : LOL : APA : JRV : M,1/R : etGerl : L LLAR:P1 1	: Tensão de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Método Ger	Cálculo Esbelte mal Adme Hizado al (15. calizado cão com cão com cão Acop ral (15.	(Carga z (Maior nsional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertice Lambo (Nsd / moment) Kapa Apro	cal: Coda) Ac*Fo Co 2ªO: Aproxima Aproximado Ama N,I	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3	/PILAR) ical: Co	(kgf/ombina	cm2) ção 1 C			 Cobr			
od : i ordM : JOIL : JO	: Tensão de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Método Ger	Cálculo Esbelte mal Adme Hizado al (15. calizado cão com cão com cão Acop ral (15.	(Carga z (Maior nsional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertice Lambo (Nsd / moment) Kapa Apro	cal: Coda) Ac*Fo Co 2ªO: Aproxima Aproximado Ama N,I	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3	/PILAR) ical: Co	(kgf/ombina	cm2) ção 1 C						
od : incomposition of the control of	: Tensão de : Índice de : Força Norm : Método uti : Méteito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr	Cálculo Esbelte mal Adme Hizado al (15. calizado cão com cão com cão Acop ral (15.	(Carga z (Maior nsional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertice Lambo (Nsd / moment) Kapa Apro	cal: Coda) Ac*Fo Co 2ªO: Aproxima Aproximado Ama N,I	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3	/PILAR) ical: Co	(kgf/ombina	cm2) ção 1 C			Cobr (cm) 5.0			
od DrdM OL ZD PA INV I	: Tensão de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Método Ger	Cálculo Esbelte mal Adme Hizado al (15. calizado cão com cão com cão Acop ral (15.	(Carga z (Maior nsional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertice Lambo (Nsd / moment) Kapa Apro	cal: Coda) Ac*Fo Co 2ªO: Aproxima Aproximado Ama N,I	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3	/PILAR) ical: Co	(kgf/ombina	cm2) ção 1 C			Cobr (cm) 5.0			
od : DrdM : OL : OL : ZD : APA : RRV : M,1/R : LLAR:P1 : 1 : 1 cobe	: Tensão de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Método Ger	Cálculo Esbelte anl Adme lizado nal (15. alizado cão com cão com cão Acop cal (15. Seção [cm] 20.x	(Carga z (Maior nsional nsional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertice Lambo (Nsd / moment) Kapa A a Apro Diagra Área [cm2]	cal: Cola) (Ac*Fo co 2*O: Aproxim aproximad man N,I NFer 4	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3	/PILAR) ical: Co 3) .4) As [cm2] 3.1	(kgf/combination) Taxa [%]	cm2) ção 1 C	C/ PP [cm] 12.0 N	fck (MPa) 30.0		T L	abd 45	Ni 20r
od : i i i i cot i c	: Tensão de : Índice de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Método Ger tulo de : Método Ger : Método Ger : Método Ger : Metodo : Método : Mét	Cálculo Esbelte anal Adme lizado nal (15. alizado cão com cão com cão Acop cal (15. Seção [cm] 20.x	(Carga z (Maior nsional nsional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertice Lamber (Nsd / Moment) Kapa / A a Apro Diagra Área [cm2] 400.0	eal: Cda) (Ac*FG (O 2*O) Aproximation N, I NFer 4	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3	/PILAR) ical: Co 3) .4) As [cm2] 3.1	(kgf/combina	cm2) ção 1 C	C/ PP[cm] 12.0 N	fck (MPa) 30.0		T L	45	Ni 20r 0385 ELO
od : i i i i i i i i i i i i i i i i i i i	: Tensão de : Indice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Método Ger	Cálculo Esbelte and Adme lizado al (15. calizado ao com ão com ão Acop cal (15. Seção [cm] 20.x	(Carga z (Maior nsional călculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertice Lamber (Nsd / momente) Kapa / A a Apre Diagra Área [cm2] 400.0	cal: Cda) 'Ac*Fc 2*0: Aproximation Aproximation N,I	ombinaçã cd) (Car rdem mada (15.8. M,1/r (1 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3.3.3.2) 5.8.3.3	/PILAR) ical: Cc 3) .4) As [cm2] 3.1	(kgf/ombina	cm2) ção 1 C	C/ PP [cm] 12.0 N	fck (MPa) 30.0		T L	abd 45	Ni 20r 0385 ELO Lances:
bd : i i i i i i i i i i i i i i i i i i i	: Tensão de : Indice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Método Ger	Cálculo Esbelte and Adme lizado al (15. calizado ao com ão com ão Acop cal (15. Seção [cm] 20.x	(Carga z (Maior nsional călculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertice Lamber (Nsd / momente) Kapa / A a Apre Diagra Área [cm2] 400.0	cal: Cda) 'Ac*Fc 2*0: Aproximation Aproximation N,I	ombinaçã cd) (Car rdem mada (15.8. M,1/r (1 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3.3.3.2) 5.8.3.3	/PILAR) ical: Cc 3) .4) As [cm2] 3.1	(kgf/ombina	cm2) ção 1 C	C/ PP [cm] 12.0 N	fck (MPa) 30.0		T L	abd 45	Ni 20r 0385 ELO Lances:
od : individual indivi	: Tensão de : Índice de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Método Ger tulo de : Método Ger : Método Ger : Método Ger : Metodo : Método : Mét	Cálculo Esbelte and Adme lizado al (15. calizado ao com ão com ão Acop cal (15. Seção [cm] 20.x	(Carga z (Maior nsional călculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertice Lamber (Nsd / moment) Kapa / A a Apre Diagra Área [cm2] 400.0	cal: Cola) (Ac*Fr.co 2*0: Aproximation aproximation aproximation N,I	ombinaçã cd) (Car rdem mada (15.8. M,1/r (1 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3.3.3.2) 5.8.3.3	/PILAR) ical: Cc 3) .4) As [cm2] 3.1	(kgf/ombina	cm2) ção 1 C	C/ PP [cm] 12.0 N	fck (MPa) 30.0		T L	abd 45	Ni 20r 0385 ELO Lances:
od : i i i i i i i i i i i i i i i i i i i	: Tensão de : Indice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Método Ger	Cálculo Esbelte and Adme lizado al (15. calizado ao com ão com ão Acop cal (15. Seção [cm] 20.x	(Carga z (Maior nsional călculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertice Lamber (Nsd / moment) Kapa / A a Apre Diagra Área [cm2] 400.0	cal: Cola) (Ac*Fr.co 2*0: Aproximation aproximation aproximation N,I	ombinaçã cd) (Car rdem mada (15.8. M,1/r (1 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3.3.3.2) 5.8.3.3	/PILAR) ical: Cc 3) .4) As [cm2] 3.1	(kgf/ombina	cm2) ção 1 C	C/ PP [cm] 12.0 N	fck (MPa) 30.0		T L	abd 45	Ni 20r 0385 ELO Lances:
od : in the control of the control o	: Tensão de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Método Ger	Cálculo Esbelte aal Adme lizado cal (15. cal (15. cal (25. cal (25	(Carga z (Maior naional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertic Lambo (Nsd / moment) Kapa ! a Apro Diagra Área [[cm2] 400.0	al: Color of the c	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3 PDD x y N N	/PILAR) ical: Cc 3) .4) As [cm2] 3.1 As [cm2] 3.1	Taxa [%] .79		C/ PP [cm] 12.0 N	fck (MPa) 30.0	Cobr (cm) 5.0	T L 8.3		Ni 20r 0385 ELO Lances: Ni 20r 0397 ELO
od : in the control of the control o	: Tensão de : Indice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Método Ger	Cálculo Esbelte aal Adme lizado cal (15. cal (15. cal (25. cal (25	(Carga z (Maior naional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertic Lambo (Nsd / moment) Kapa ! a Apro Diagra Área [[cm2] 400.0	al: Color of the c	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3 PDD x y N N	/PILAR) ical: Cc 3) .4) As [cm2] 3.1 As [cm2] 3.1	Taxa [%] .79		C/ PP [cm] 12.0 N	fck (MPa) 30.0	Cobr (cm) 5.0	T L 8.3	abd 45	Ni 20r 0385 ELO Lances: Ni 20r 0397 ELO
od : in the control of the control o	: Tensão de : Índice de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padi : Pilar Padi : Pilar Padi : Pilar Pado : Método Ger tulo : ERTURA	Cálculo Esbelte al Adme lizado al (15. alizado cao (15. calizado ão com cão Acop cal (15. calizado al (15. c	(Carga z (Maior nsional călculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertic Lambo (Msd / moment) Kapa I Diagra Area [cm2] 400.0	al: Color of the c	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1 Bitola [mm] 10.0 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3 PDD xy N N PDD xy N N	/PILAR) ical: Cc 3) .4) As [cm2] 3.1	Taxa [%]	Estr [mm] 5.0	C/ PP [cm] 12.0 N	fck (MPa) 30.0	Cobr (cm) 5.0	T L 8.3 num T L 8.5	abd 45	Ni 20r 0385 ELO Lances: Ni 20r 0397 ELO
od : in control contro	: Tensão de : Índice de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padi : Pilar Padi : Pilar Padi : Pilar Pado : Método Ger tulo : ERTURA	Cálculo Esbelte al Adme lizado al (15. alizado can (15. calizado ão com can (15. calizado ao (15. calizado a	(Carga z (Maior nsional călculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertic Lambo (Msd / moment) Kapa I Diagra Area [cm2] 400.0	al: Color of the c	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1 Bitola [mm] 10.0 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3 PDD xy N N PDD xy N N	/PILAR) ical: Cc 3) .4) As [cm2] 3.1	Taxa [%]	Estr [mm] 5.0	C/ PP [cm] 12.0 N	fck (MPa) 30.0	Cobr (cm) 5.0	T L 8.3 num T L 8.5	abd 45	Ni 20r 0385 ELO Lances: Ni 20r 0397 ELO
od :: DrdM :: OL :: ZD :: DRA :: IRV :: PA :: IRV :	: Tensão de : Índice de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Pilar Padr : Wétodo Ger tulo : ERTURA	Cálculo Esbelte aal Adme lizado aal (15. aalizado acidizalizado acidizado acidizalizado acidizado	(Carga z (Maior naional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertic Lambo (Nsd / moment) Kapa i a Apro Diagra Área [cm2] 400.0	al: Collaboration of the colla	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3 PDD x y N N	/PILAR) ical: Cc 3) .4) As [cm2] 3.1 As [cm2] 3.1	Taxa [%] .79	cm2) ção 1 C Estr [mm] 5.0 Estr [mm] 5.0	C/ PP [cm] 12.0 N	fck (MPa) 30.0	Cobr (cm) 5.0	T L 8.3	:: 2	Ni 20r 0385 ELO Lances: Ni 20r Lances:
od : indM	: Tensão de : Índice de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padi : Pilar Padi : Pilar Padi : Pilar Pado : Método Ger tulo : ERTURA	Cálculo Esbelte aal Adme lizado aal (15. aalizado acidizalizado acidizado acidizalizado acidizado	(Carga z (Maior naional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertic Lambo (Nsd / moment) Kapa i a Apro Diagra Área [cm2] 400.0	al: Collaboration of the colla	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3 PDD x y N N	/PILAR) ical: Cc 3) .4) As [cm2] 3.1 As [cm2] 3.1	Taxa [%] .79	cm2) ção 1 C Estr [mm] 5.0 Estr [mm] 5.0	C/ PP [cm] 12.0 N	fck (MPa) 30.0	Cobr (cm) 5.0	T L 8.3	:: 2	Ni 20r 0385 ELO Lances: Ni 20r Lances:
rdM : color	: Tensão de : Índice de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Pilar Padr : Wétodo Ger tulo : ERTURA	Cálculo Esbelte aal Adme lizado aal (15. aalizado acidizalizado acidizado acidizalizado acidizado	(Carga z (Maior naional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertic Lambo (Nsd / moment) Kapa i a Apro Diagra Área [cm2] 400.0	al: Collaboration of the colla	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3 PDD x y N N	/PILAR) ical: Cc 3) .4) As [cm2] 3.1 As [cm2] 3.1	Taxa [%] .79	cm2) ção 1 C Estr [mm] 5.0 Estr [mm] 5.0	C/ PP [cm] 12.0 N	fck (MPa) 30.0	Cobr (cm) 5.0	T L 8.3	:: 2	Ni 20r 0385 ELO Lances: Ni 20r Lances:
rdM : rdM : oL : ZD : PA : RV : M,1/R : tGerl : 1 COBE PA : 1 COBE	: Tensão de : Índice de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Pilar Padr : Wétodo Ger tulo : ERTURA	Cálculo Esbelte anal Adme lizado ala ladme lizado callizado calliz	(Carga z (Maior nesional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertic Lambo (Nsd / moment) Kapa I a Apro Diagra Área [cm2] 400.0	nal: Color of the	ombinaçã cd) (Car rdem mada (15.8. mada (15.8. m,1/r (1 Bitola [mm] 10.0 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3 PDD xyNNN	/PILAR) ical: Cc 3) .4) As [cm2] 3.1 As [cm2] 3.1	Taxa [%] .79	Estr [mm] 5.0	C/ PP [cm] 12.0 N	fck (MPa) 30.0	Cobr (cm) 5.0	T L 8.5		Ni 20r 0385 ELO Lances: Ni 20r 0397 ELO
d :: rdM :: OL :: ZD :: PA :: RV :: M,1/R :: LAR:P1 :: 1	E TENSÃO DE : TenSÃO DE : Índice de E : Força Norn E : Força Norn E : Método uti : Efeito Loc : Efeito Loc : Pilar Padi : Método Ger E : E : E : E : E : E : E : E : E : E	Cálculo Esbelte anal Adme lizado ala ladme lizado callizado calliz	(Carga z (Maior nesional cálculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertic Lambo (Nsd / moment) Kapa I a Apro Diagra Área [cm2] 400.0	nal: Color of the	ombinaçã cd) (Car rdem mada (15.8. mada (15.8. m,1/r (1 Bitola [mm] 10.0 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3 PDD xyNNN	/PILAR) ical: Cc 3) .4) As [cm2] 3.1 As [cm2] 3.1	Taxa [%] .79	Estr [mm] 5.0	C/ PP [cm] 12.0 N	fck (MPa) 30.0	Cobr (cm) 5.0	T L 8.3 T L 8.5 num T L 8.5	1: 2	Ni 20r 0385 ELC Lances: Ni 20r 0397 ELC Lances: Ni 20r 0385 ELC
d :: rdM :: OL :: ZD :: PA :: RV :: M,1/R :: LAR:P1 :: 1	E TENSÃO de : Índice de : Índice de : Força Norn : Método uti : Efeito Loc : Efeito Loc : Efeito Loc : Pilar Padr : Pilar Padr : Pilar Padr : Método Ger tulo : ETURA	Cálculo Esbelte hal Adme lizado al (15. halizado ao (15. halizado ao Acop al (15. calizado ao (20. calizado	(Carga z (Maior nsional călculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertic Lambo (Nsd / moment)) Kapa I a Apro Diagra Área [cm2] 400.0	nal: Collaboration of the coll	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1 Bitola [mm] 10.0 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3	/PILAR) ical: Cc 3) .4) As [cm2] 3.1 As [cm2] 3.1	Taxa [%] .79	Estr [mm] 5.0	C/ PP [cm] 12.0 N	fck (MPa) 30.0	Cobr (cm) 5.0	T L 8.3 T L 8.5 Num T L 8.5		Ni 201 Lances: Ni 201 0385 ELC
rdM : rdM : OL : ZD : PA : RV : M,1/R : tGerl : 1 COBE PA : 1 COB	E TENSÃO DE E INDIÃO DE ESTURA ESTURA ESTURA ESTURA ESTURA ESTURA ESTURA ESTURA	Cálculo Esbelte hal Adme lizado al (15. halizado ao (15. halizado ao Acop al (15. calizado ao (20. calizado	(Carga z (Maior nsional călculo 8.3) (15.9.3 Rigidez Curvatur lado ao 8.3.2)	Vertic Lambo (Nsd / moment)) Kapa I a Apro Diagra Área [cm2] 400.0	nal: Collaboration of the coll	ombinaçã cd) (Car rdem mada (15 a (15.8. M,1/r (1 Bitola [mm] 10.0 Bitola [mm] 10.0	o 1 CAD ga Vert .8.3.3. 3.3.2) 5.8.3.3	/PILAR) ical: Cc 3) .4) As [cm2] 3.1 As [cm2] 3.1	Taxa [%] .79	Estr [mm] 5.0	C/ PP [cm] 12.0 N	fck (MPa) 30.0	Cobr (cm) 5.0	T L 8.3 T L 8.5 Num T L 8.5		Ni 201 Lances: Ni 201 0397 ELC Lances: Ni 201 0397 ELC

6.4.5.1.11 MONOVIA

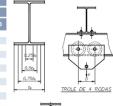
Verificação de Perfis para Monovias em viga metálica vãos CONTÍNUAS

ASTM A 572 Grau 50 (Aço Gerdau de alta resistência) com Fy = 3.45 tf/cm² http://metalica.com.br/tabelas/tabela-perfil-laminado-i-e-h

Planilha Validada pelo artigo Gerdau por Rosângela C. Bastos Martins (Perfis Gerdau Açominas em Monovias)

Caso de monovia Biapoiada: A verificação da mesa inferior será feta para a combinação das tensões para momento s máximos positivos (quase meio

do vao) e a vernicação da mesa superior sera re	ta para a combinação	oa s tenso e s para m o	om ento s m aximo	is negativos.
	netria Caracterí	sticas geomét	ricas	
d [mm]		260,0	Ix [cm4]	4046
bf [mm]		102,0	Wx [cm³]	311,2
tf [mm]		10,0	Rx [cm]	10,51
h [mm]		240,0	ly [cm]	178
tw [mm]		6,4	Wy [cm³]	34,8
Área [cm²]		36,6	Ry [cm]	2,2
d/Af [cm-1]		2.55	rT [cm]	2.62



Características do equipamento Capacidade da talha [tf] Trolhe + Acessórios [tf]

Impacto 10% Nº de rodas Carga total [tf] 1,43 Carga por roda [tf] Vão da monovia entre apoios [m] Vão da monovia do balanço [m] Peso próprio do perfil [kgf/m] 28,40

Adota 25% para motorizado e 10% para manual Tabela 1

Valores de C - BS 2853 Apêndice G							
b, mm	2 rodas	4 rodas - Distância "D" entre eixos - mm					
		130	150	170	200	220	Acima de 220
76	1	0,5	0,5	0,5	0,5	0,5	0,5
102	1	0,5	0,5	0,5	0,5	0,5	0,5
127	1	0,565	0,515	0,5	0,5	0,5	0,5
133	1	0,575	0,515	0,5	0,5	0,5	0,5
146	1	0,6	0,55	0,5	0,5	0,5	0,5
152	1	0,615	0,56	0,5	0,5	0,5	0,5
165	1	0,635	0,58	0,53	0,5	0,5	0,5
171	1	0,65	0,595	0,54	0,5	0,5	0,5
177	1	0,66	0,605	0,555	0,5	0,5	0,5
191	1		0,625	0,58	0,525	0,5	0,5
209	1		0,66	0,62	0,56	0,515	0,5
228	1			0,66	0,595	0,55	0,5

Parâmetros de cálculo

Reação de apoio [tf] Momento (pos) yf [tf.cm] (STRAP)

Desloc. vão [cm] (STRAP)

Resultados

Massa [kgf/m]

A 572 G50
3,45
500
250
2100
2,9

Ta	be	la	2

Valores de K ₁ - BS 2853 Apêndice G						
Posição da roda	Trole de 2 rodas	Trole de 4 rodas				
b,	1	1				
0,75 b,	1,22	1,3				
0,5 b,	1,4	1,5				
0,25 b,	1,55	1,75				

abela 3					
Valores de K ₂ - BS Apêndice G					
Posição da roda	Para trole de 2 ou 4 rodas				
b _r	0,5				
0,75 b _r	0,59				
0,5 b	0,77				
0.25 b.	1.4				

Momento (neg) γ f [tf.cm] (STRAP)

Verificação do deslocamento		_
Desloc. Adm entre vãos [cm]	0,57	ok
Desloc, Adm no balanco [cm]	0.80	ok

124

329

0,40

0,80

Tensões atuantes [tf/cm²]

Cortante x γf	0,09	ok
Flexão global (Mmeio do vão)	0,40	
Flexão global (Mno apoio)	1,06	
Flexão local na aba inferior	0,23	
Flexão local na aba superior	0,45	
Tensões combinadas da aba inferior	0,46	ok
Tensões combinadas da aba superior	1,15	ok

С	0,5
K1	1
K2	0,5

Tensões admissíveis

Cortante	1,38	ok
----------	------	----

Deslocamentos	70%
Momentos	99%
Cortantes	6%

Para elementos de seção compacta ou não e sem contenção lateral ASTM A572, temos:

Fbx	1,16
Lb/rT	108,78
Intervalos:	
(7171Cb/Fv)^0.5	72,09
(35858Ch/Ev)^0.6	161.2

Tabela 4

Capacidade (P) da Talha (tf)	PP Talha (tf)	Espaçamento entre Apoios (m)						
ua rama (tr)	raina (u)	2	3	4	6	8	10	12
0,5	0,13	W 150 x 13,0	W 150 x 13,0	W 150 x 18,0	W 200 x 26,6	W 200 x 31,3	W 250 x 38,5	W 310 x 52,0
1	0,30	W 150 x 13,0	W 150 x 18,0	W 150 x 22,5	W 200 x 31,3	W 250 x 44,8	W 360 x 57,8	W 360 x 72,0
1,25	0,30	W 150 x 18,0	W 150 x 18,0	W 200 x 26,6	W 200 x 35,9	W 250 x 44,8	W 360 x 64,0	W 360 x 72,0
2	0,55	W 150 x 18,0	W 200 x 26,6	W 200 x 31,3	W 250 x 44,8	W 360 x 64,0	W 360 x 72,0	W 360 x 91,0
2,5	0,55	W 150 x 18,0	W 200 x 26,6	W 200 x 31,3	W 250 x 44,8	W 360 x 64,0	W 360 x 79,0	W 360 x 110,0
3	0,95	W 150 x 29,8	W 200 x 31,3	W 250 x 38,5	W 360 x 57,8	W 360 x 72,0	W 360 x 91,0	W 610 x 125,0
3,75	1,05	W 150 x 29,8	W 200 x 31,3	W 310 x 44,5	W 360 x 64,0	W 360 x 79,0	W 360 x 101,0	W 610 x 140,0
4	1,05	W 150 x 29,8	W 200 x 31,3	W 310 x 44,5	W 360 x 64,0	W 360 x 79,0	W 360 x 110,0	W 610 x 140,0
5	1,10	W 150 x 29,8	W 200 x 35,9	W 310 x 52,0	W 360 x 72,0	W 610 x 113,0	W 610 x 125,0	W 610 x 155,0
6	1,50	W 200 x 35,9	W 250 x 38,5	W 310 x 52,0	W 360 x 72,0	W 610 x 125,0	W 610 x 140,0	W 610 x 174,0
6,5	1,60	W 200 x 35,9	W 250 x 44,8	W 360 x 64,0	W 460 x 89,0	W 610 x 125,0	W 610 x 155,0	W 610 x 174,0
7,5	1,60	W 250 x 38,5	W 250 x 44,8	W 360 x 64,0	W 460 x 89,0	W 610 x 140,0	W 610 x 155,0	W 610 x 174,0
8	1,90	W 250 x 38,5	W 250 x 44,8	W 360 x 64,0	W 610 x 113,0	W 610 x 140,0	W 610 x 155,0	W 610 x 174,0
10	1,90	W 250 x 44,8	W 310 x 52,0	W 360 x 72,0	W 610 x 125,0	W 610 x 155,0	W 610 x 174,0	Ver nota 7

a) Se Lb/rT < 72,09	
Fbx = 0.6Fy	
Fbx	2,07

b) Se 72,09 < Lb/rT < 161,2	
Fbx = 0.6Fy	
Fbx"	0,99
Fbx"	1,16
Fbx	1,16

c) Se Lb/rT > 161,2	
Fbx = 0.6Fy	
Fbx'	1,01
Fbx = 0.6Fy Fbx' Fbx"	1,16
Fbx	1,16

d) Para qualquer valor de Lb/rT	
Ehv	1 16

- Notas:

 1 Perfis em aço ASTM A 572 Grau 50.

 2 Parâmetros de cálculo conforme exposto no item 4 "Premissas para pré-dimensionamento".

 3 PP peso próprio estimado para a talha.

 4 Impacto médio 20% (entre operação motorizada e manual).

 5 Carga aplicada para a combinação (P + PP) x 1,20

 6 Trole com 4 rodas, apoiadas em bf (extremidade da aba do Perfil) para K1 = 1,0, ver tabela 2, exceto onde indicado.

 7 Trole com 4 rodas, apoiadas em 0,5 b., para K1 = 1,5, ver tabela 2, usar W 610 x 174,0.

6.4.5.1.12 FLUTUAÇÃO

A análise da estrutura quanto à flutuação foi confeccionada através do programa de modelagem em elementos finitos STRAP. Nesse sentido, foi verificado se a carga de peso próprio somada as cargas extras são superiores ao esforços de empuxo da água e, assim, não ocorre flutuação na estrutura.

	LOAD CASES LIST		
no.	no in results	name	
1	1	PP	
2	2	SC	
3	3	PRESSAO HIDROSTATICA 1	
4	4	PRESSAO HIDROSTATICA 2	
5	5	EMPUXO DE SOLO	
6	6	ENCHIMENTO	
7	7	FLUTUACAO	

COMBINATIONS TABLE		
Comb		
1	1 * 1.00 + 6 * 1.00 + 7 * 1.00	
2	1 * 1.00 + 5 * 1.00 + 6 * 1.00 + 7 * 1.10	

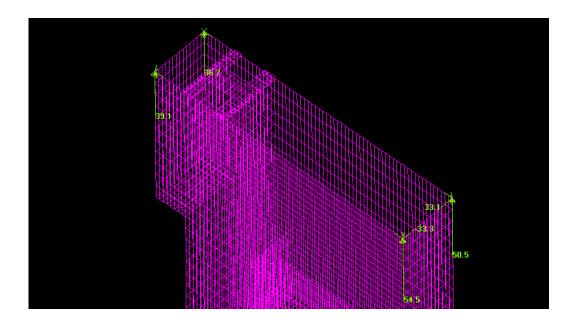


Figura 6.8 – Reações Positivas

6.5 RESUMO

Resumo de Armaduras

Fissuração, esp maximo 15fi

	Calculado	Adotado
F1		
AMBAS AS DIREÇÕES		
As	3ø12,5 c.40	ø12,5 c.12**
F2		
AMBAS AS DIREÇÕES		
As	4ø12,5 c.30	ø12,5 c.12**
F3		
DIREÇÃO PRINCIPAL		
As	8ø16 c.13	ø16 c.12
TAMPA (esp=20cm)		
AMBAS AS DIREÇÕES		
As	6ø8 c.16	ø8 c.12
PAR LONGITUDINAL (esp=26cm)		
ARM. HORIZONTAL		
As	10ø16 c.10	ø16 C.10
PAR LONGITUDINAL (esp=26cm)		
ARM VERTICAL		
As	8ø12,5 c.13	ø12,5 c.12**
PAR TRANS 1		
ARM. HORIZONTAL		
As	3ø12,5 c.40	ø12,5 C.10
PAR TRANS 1		
ARM VERTICAL		
As	6ø8 c.16	ø8 c.12
PAR TRANS 2 E 3		
ARM. HORIZONTAL		
As	5ø12,5 c.22	ø12,5 c.12**
PAR TRANS 2 E 3		
ARM VERTICAL		
As	7ø8 c.15	ø8 c.12
PAR TRANS 4		
ARM. HORIZONTAL		
As	5ø12,5 c.23	ø12,5 C.10
PAR TRANS 4		
ARM VERTICAL		
As	6ø8 c.16	ø8 c.12

^{*} Adotada armadura por retração conforme planilha específica

^{**} Facilidade construtiva

7 CAIXA DE QUEBRA DE PRESSÃO

7.1 DOCUMENTOS DE REFERÊNCIA

A seguir está relacionada a planta utilizada como referência para o desenvolvimento do projeto estrutural:

• 09_EEE_LR

7.2 MATERIAIS / PARÂMETROS

Para a estrutura foram especificadas, de forma a garantir adequada proteção à armadura, a Classe de Agressividade Ambiental III cujas características são descritas na NBR 6118 e a seguir:

- Resistência característica do concreto fck = 30 Mpa;
- Cobrimento da armadura:
 - o Cobrimento adotado:
 - o 5.0 cm: Faces de paredes e lajes
- Aço CA-50;
- Aço CA-60;

7.3 GEOMETRIA DA ESTRUTURA, CARREGAMENTOS E VERIFICAÇÃO ESTRUTURAL

7.3.1 GEOMETRIA DA ESTRUTURA

As figuras a seguir apresentam informações globais da geometria da estrutura projetada apenas com o intuito de identificação da estrutura. Detalhes da geometria podem ser encontrados nas plantas de referência e de forma da estrutura de concreto.

PLANTA BAIXA

ESCALA: 1/25

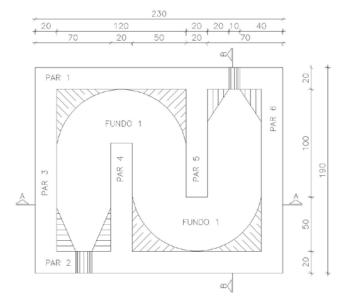


Figura 7.1 – Planta Baixa

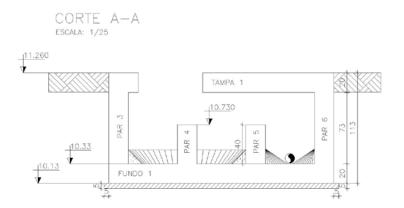


Figura 7.2 – Corte.

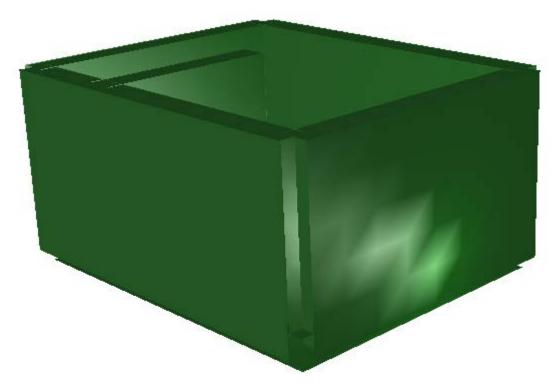


Figura 7.3 – Perspectiva STRAP

7.3.2 MODELO CÁLCULO

Todas as estruturas aqui representadas foram analisadas através da modelagem em elementos finitos usando o programa de análise, STRAP. No Strap, podemos modelar usando elementos de barras, placas ou sólidos quando necessários indicando dimensões dos elementos finitos, propriedades dos materiais, geometria da estrutura e condições de contorno.

A figura a seguir apresenta o modelo de elementos finitos utilizados assim como as condições de contorno utilizadas.

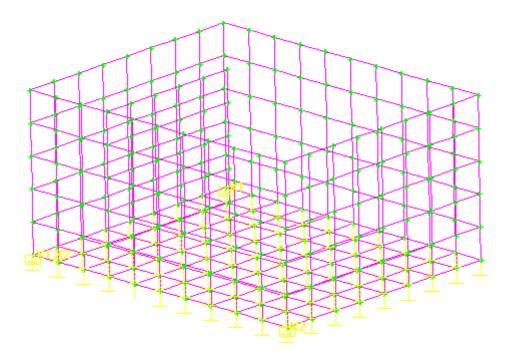


Figura 7.4 – Modelo em Elementos Finitos

7.3.3 CARREGAMENTOS

A tabela a seguir apresenta os carregamentos e os valores adotados para o modelo retirados do software:

	LOAD CASES LIST		
no.	no. in results	name	
1	1	PESO PROPRIO	
2	2	EMPUXO SOLO	
3	3	CFLULA A1	

- O peso próprio é determinado automaticamente pelo programa através da multiplicação do peso específico do concreto armado e espessura do elemento estrutural plano (paredes e lajes);
- 5. O empuxo de água é determinado em função da lâmina d'àgua presente na caixa.

7.3.4 COMBINAÇÕES DE CARREGAMENTOS

A lista a seguir apresenta a combinação dos carregamentos utilizada com coeficientes 1,0. Os coeficientes de majoração e de combinação serão inclusos nas próprias planilhas de cálculo.

COMBINATIONS TABLE			
Comb			
1	1 * 1.00		
2	1 * 1.00 + 2 * 1.00		
3	1 * 1.00 + 3 * 1.00		
4	1 * 1.00 + 2 * 1.00 + 3 * 1.00		

Coeficientes de minoração são utilizados para os materiais empregados e relação em módulos de elasticidade para cálculo de fissuração:

COEFICIENTES DE MINORAÇÃO DAS RESISTÊNCIAS/

g _c =	1.4	Es/Ec _{fissuração} =	15
g _s =	1.15	Es/Ec fadiga =	10

7.3.4.1 VERIFICAÇÃO SEGUNDO A NBR 6118 (Estado Limite Último)

Para a verificação da ruptura dos elementos estruturais utiliza-se a formulação proposta pela ABNT NBR 8681 (2003).

$$F_{d} \sum_{i1}^{m} \gamma_{gi} F_{gik} \ \gamma_{q} F_{q1k} \sum_{j2}^{n} \psi_{0j} F_{qjk}$$
 (7.1)

Devido o caráter de ocorrência "permanente" das cargas variáveis como, por exemplo, água, tomouse para o ELU o coeficiente 1,4 para todas as ações sem a utilização dos fatores redutores de combinação.

7.3.4.2 VERIFICAÇÃO SEGUNDO A NBR 6118 (Estado Limite de Utilização)

A NBR 6118 (2003) sugere que a verificação para a fissuração seja feita pela Combinação Frequente das Ações.

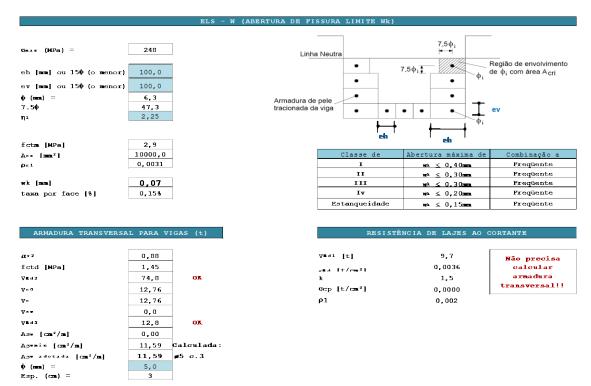
$$F_{d,ser} = \sum_{i=1}^{m} F_{gik} + \psi_1 F_{q1k} + \sum_{j=2}^{m} \psi_{2j} F_{qjk}$$
(7.2)

Devido o caráter de ocorrência "permanente" das cargas variáveis como, por exemplo, água, tomouse para o ELS o coeficiente 1,0 para todas as ações sem a utilização dos fatores redutores de combinação.

7.3.5 DIMENSIONAMENTO DA ESTRUTURA

7.3.5.1 ANÁLISE E DIMENSIONAMENTO DA ESTRUTURA

São apresentados a seguir alguns os esforços que devem ser analisados para a estrutura em questão. Será apresentado o dimensionamento dos elementos principais da estrutura.

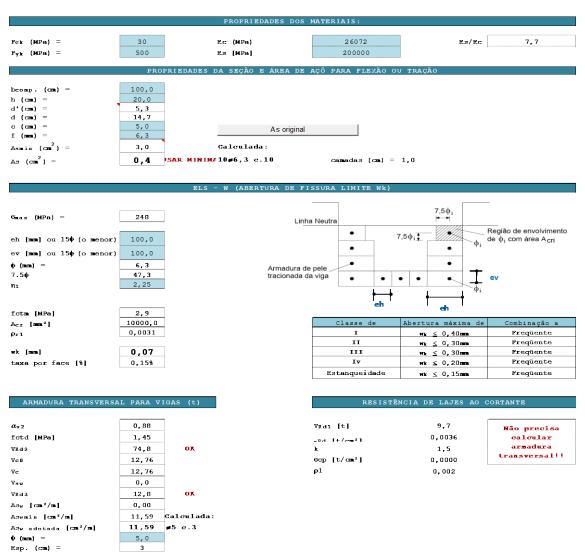

7.3.5.1.1 PAREDES

CÁLCULO DE ARMADURA DE FLEXÃO, CORTANTE E VERIFICAÇÃO DE FISSURAÇÃO NBR 6118 (2014)

		COEFICIENTES DE PONDERAÇÃO DAS	AÇÕES:	
Estado Limite Últ $gfg = \\ gfg = \\ Estado Limite de \\ gfg = $	1,40	ação Freqüente das Ações):	Obs:	PAREDES 01 E 02 RM. HORIZONTAL E VERTICAL
	co	DEFICIENTES DE MINORAÇÃO DAS RES	SISTÊNCIAS:	
gc = gs =	1,15			
		ESFORÇOS SOLICITANTES		
Nk [t] = Vk [t] = Mk [t.m] = Vbdim [t] = Nddim (t) = Mbdim = MDmaxtensões =	0,00 0,60 0,20 0,840 0,000 0,280	Camadas para tração: 1 camada 2 camada 3 camada	1	
		PROPRIEDADES DOS MATERIAI	ſS:	
Fck (MPa) = Fyk (MPa) =	30 500		00000 ENERGIA	Es/Ec7_7
bcomp. (cm) = h (cm) = d'(cm) = d (cm) = c (cm) = f (mm) = Asmin (cm ²) = As (cm ²) =	100,0 20,0 5,3 14,7 5,0 6,3 3,0	As original	das (cm) = 1,0	

Armadura adotada

PAREDES (e=20cm)			
ARM HORIZONTAL E VERTICAL , POSITIVA E NEGATIVA			
As	10ø6,3 c.10	ø6,3 c.9	


7.3.5.1.2 FUNDO E TAMPA

CÁLCULO DE ARMADURA DE FLEXÃO, CORTANTE E VERIFICAÇÃO DE FISSURAÇÃO NBR 6118 (2014)

Armadura adotada

FUNDO E TAMPA (e=20cm)			
AMBAS AS DIREÇÕES			
As	10ø6,3 c.10	ø6,3 c.9	

7.4 RESUMO

Resumo de Armaduras

Fissuração, esp maximo 15fi

	Calculado	Adotado
PAREDES (e=20cm)		
ARM HORIZONTAL E VERTICAL, POSITIVA E NEGATIVA		
As	10ø6,3 c.10	ø6,3 c.9
FUNDO E TAMPA (e=20cm)		
AMBAS AS DIREÇÕES		
As	10ø6,3 c.10	ø6,3 c.9

^{*} Adotada armadura por retração conforme planilha específica

^{**} Facilidade construtiva

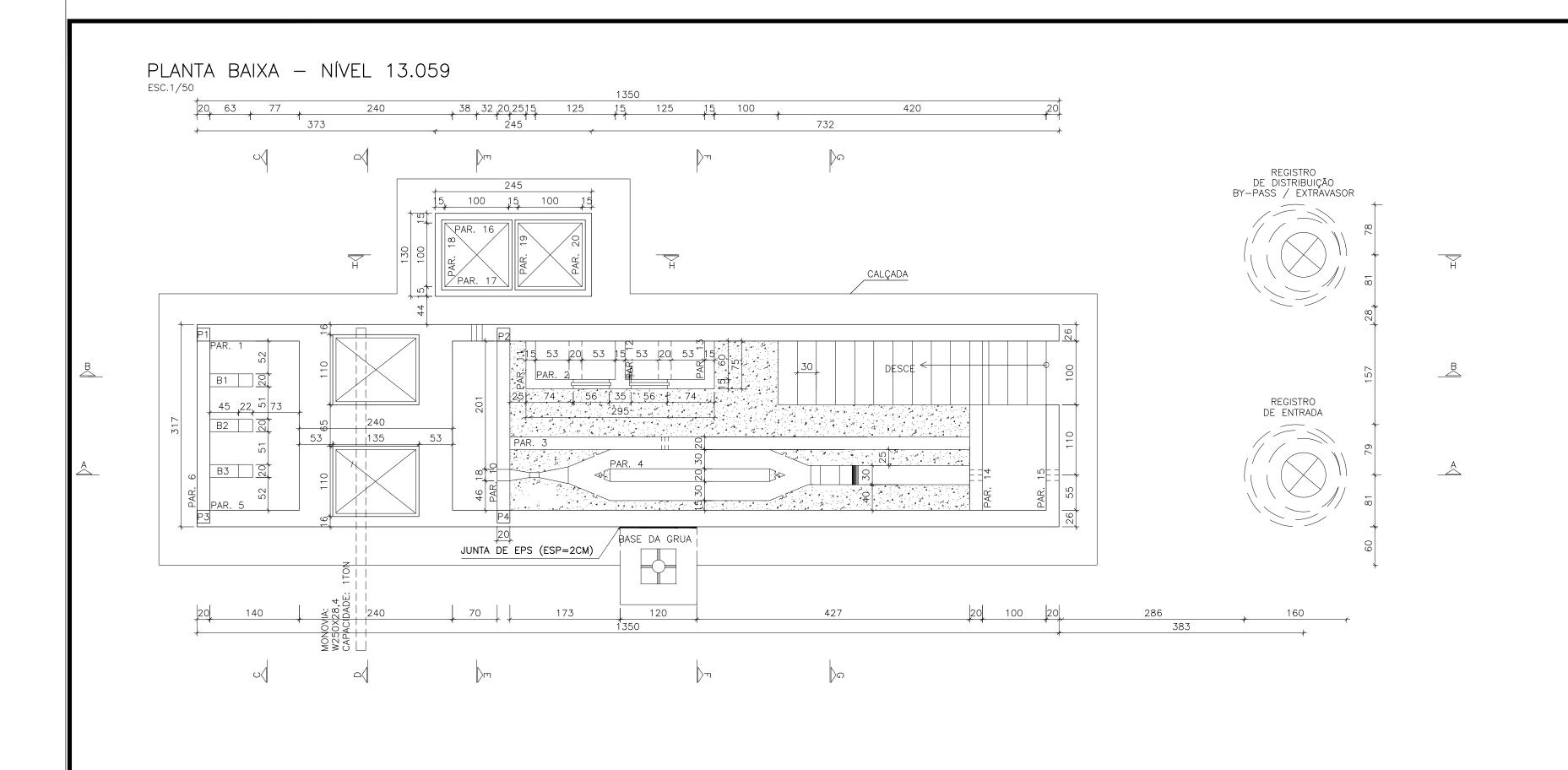
8 ART

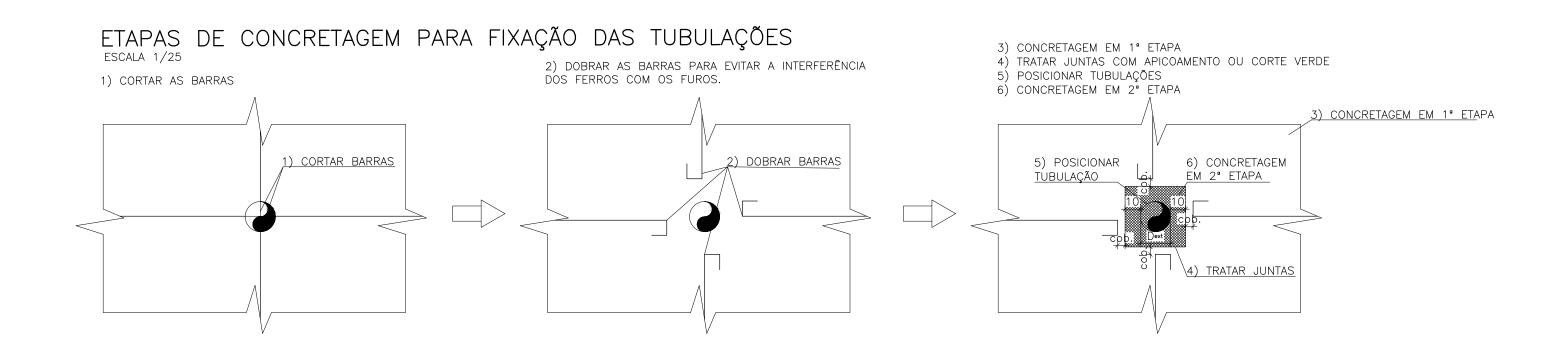
Anotação de Responsabilidade Técnica - ART CREA-BA Lei nº 6.496, de 7 de dezembro de 1977

ART OBRA / SERVIÇO Nº BA20170019414

Conselho Regional de Engenharia e Agronomia da Bahia

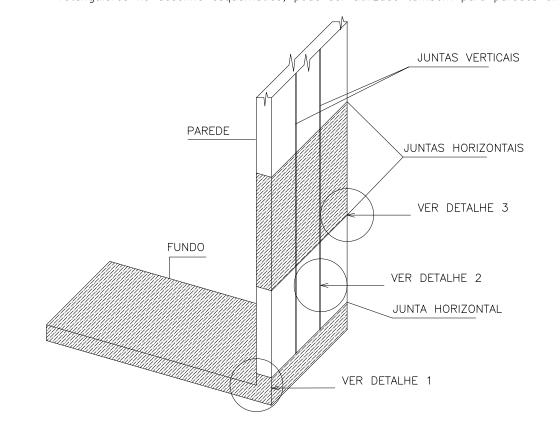
INICIAL INDIVIDUAL


1. Responsáv DANIEL DE SOUZA	MACHADO				
Titulo profissional:	ENGENHEIRO CIVIL	, MESTRE EM ENGENHARIA DI	E ESTRUTURAS, DOUTOR EM	RNP: 050031910-3	
2. Contratante	e				
Contratante: HYDR	OS ENGENHARIA E	PLANEJAMENTO S/A		CPF/CNPJ: 13.937.4	79/0001-39
AVENIDA TANCREI	DO NEVES, 274, BL-	, S/525		Nº: SN	
Complemento:			Bairro: CAMINHO DAS Á	RVORES/CEI	
Cidade: SALVADO	R		UF: BA	CEP: 41820021	
País: Brasil					
Telefone: (71) 3272	-8200	Email: comercial.hy@hydros	stem.com.br		
Contrato: 03503730	00CGB018	Celebrado em: 01/01/2017			
Valor: R\$ 8.000,00		Tipo de contratante: PESSO	A JURIDICA DE DIREITO PRIV	ADO	
Ação Institucional:	NENHUMA - NAO OF	PTANTE			
3. Dados da 0					
		ESGOTO DO CEARA CAGECE		CPF/CNPJ: 07.040.1	08/0001-57
AVENIDA LAURO V	IEIRA CHAVES			Nº: 1030	
Complemento:			Bairro: AEROPORTO		
Cidade: FORTALE		_	UF: CE	CEP: 60422700	
Telefone: (85) 3101		Email: CAGECE@SECREL.CO	DM.BR		
	gráficas: Latitude: 0				
Data de Início: 01/		Previsão de término: 22/02/20	17		
Finalidade: SEM D	EFINIÇÃO				
4. Atividade	Técnica				
12 - Execução				Quantidade	Unida
CIENTÍFICAS E	> CREA-BA-1025 -> TÉCNICAS -> SERV OS EM CONCRETO A	CONSTRUÇÃO CIVIL - ATIVIÇOS TÉCNICOS PROFISSIONA IRMADO	/IDADES PROFISSIONAIS, IS -> #177 - TANQUES OU	2,00	
	Após a conc	lusão das atividades técnicas o pro	fissional deverá proceder a baixa	a desta ART	
5. Observaçõ				10	
ELABORAÇÃO DO DE QUEBRA DE PR 011/2014-PROJU-C	RESSAU, CUNFURME	ULO ESTRUTURAL DO SES DO P E CONTRATO COM A HYDROS N	LANALTO PALMEIRA DAS SEG ° 035037300CGB018 PARA ATE	SUINTES UNIDADES (1) E ENDER CONTRATO	EE (2) CAIXA
6. Declaraçõe	es				
	e Classe				
ABENC - ASSOCIA	ÇÃO BRASILEIRA DE	ENGENHEIROS CIVIS	1.		
8. Assinatura	s		LAN ON land	6 SKAL	
	deiras as informações	acima	PANIEL DE SOCZA	MACHADO - CPF: 897.171.47	76.16
Samon	16 00 FEVER		Motoso Mina	45	79-10
Local		data	HYDROS ENGENHARIA E PLA	NEJAMENTO SIA - CNPJ: 13.	937.479/0001-3
9. Informaçõe					
* A ART é válida son	nente quando quitada,	mediante apresentação do compr	ovante do pagamento ou conferê	encia no site do Crea.	
10. Valor				one oo ored.	
	31.53 Page	o em: 13/02/2017	Nosso Número: 46754044		

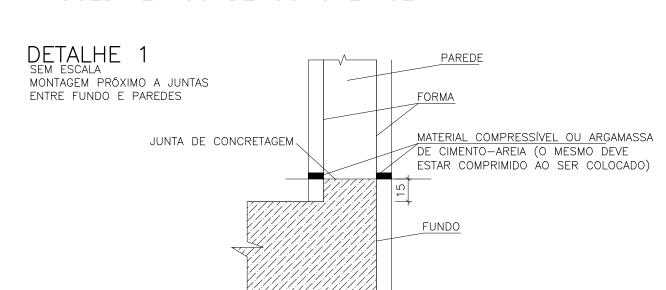


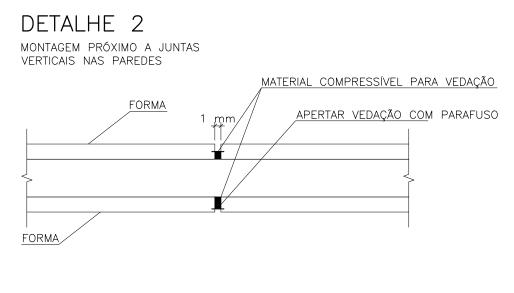
9 PEÇAS GRÁFICAS

	TOMO ÚNICO					
	RELAÇÃO DE DESENHOS					
DESENHO:	DESENHO: PRANCHA: TÍTULO:					
01/07	01/05	ESTAÇÃO ELEVATÓRIA DE ESGOTO — EEE — PLANALTO PALMEIRAS — PLANTA BAIXA (FORMAS)				
02/07	02/05	ESTAÇÃO ELEVATÓRIA DE ESGOTO — EEE — PLANALTO PALMEIRAS — PLANTA BAIXA E CORTES A-A, B-B, C-C E D-D				
03/07	03/05	ESTAÇÃO ELEVATÓRIA DE ESGOTO – EEE – PLANALTO PALMEIRAS – PLANTA DE FORMAS E CORTES E-E, F-F, G-G E H-H				
04/07 04/05 DETALHAMENTO DO FUNDO 3, PAREDES 1 E 5, T		ESTAÇÃO ELEVATÓRIA DE ESGOTO — EEE — PLANALTO PALMEIRAS — DETALHAMENTO DO FUNDO 3, PAREDES 1 E 5, TAMPA 1, ESCADA, BASE DA GRUA, VIGAS 1 A 4 E PILARES 1 A 4				
05/07	05/05	ESTAÇÃO ELEVATÓRIA DE ESGOTO — EEE — PLANALTO PALMEIRAS — DETALHAMENTO DOS FUNDOS 1, 2 E 4, PAREDES 2 A 4, 6 A 20 E RALO				
06/07	06/07 01/02 CAIXA DE QUEBRA DE PRESSÃO – PLANTA BAIXA, VISTA SUPERIOR, CORTE B, DETALHAMENTO – PAREDES 1 E 2 (FORMAS E ARMADURAS)					
07/07	02/02	CAIXA DE QUEBRA DE PRESSÃO – DETALHAMENTO DAS PAREDES 3, 4, 5 E 6, FUNDO 1 E TAMPA 1 (ARMADURAS)				

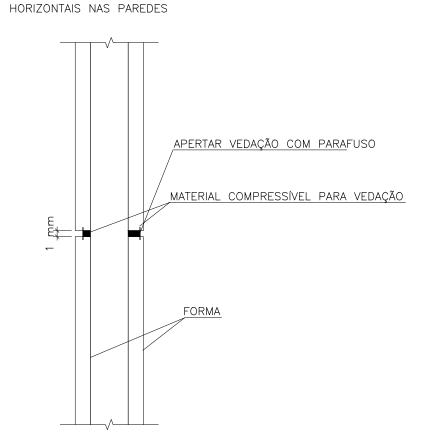


PLANO DE CONCRETAGEM ESQUEMÁTICO


1—Realizar tratamento das juntas de concretagem com Corte Verde a cada, no máximo, 180cm concretados verticalmente e horizontalmente


utilizando jato de água sob pressão.

OBS: Os detalhes apresentados são genéricos e esquemáticos e portanto, não consideram a geometria real do elemento estrutural. O objetivo deste detalhe é somente especificar os procedimentos referentes à juntas de concretagem. Portanto, apesar de indicar paredes retangulares no desenho esquemático, pode ser utilizado também para paredes circulares ou superfíces curvas.



PROCEDIMENTOS DE CONCRETAGEM

DETALHE 3 MONTAGEM PRÓXIMO A JUNTAS

LOCAÇÃO DE SONDAGENS COORDENADAS — ELEVAÇÕES NORTE ESTE EL.

23,89

4 3,125

σ max [kg/cm2]

Nspt (na implantação)	23,35
$oldsymbol{\sigma}$ adm [kg/cm2]	4
Cota Implantação [m]	4,375
NÍVEL 9,550	

0,43

NÍVEL 8,050

♂ max [kg/cm2]	0,57
Nspt (na implantação)	15
σ adm [kg/cm2]	3,00
Cota Implantação [m]	9,550

Obs.: Para as bitolas indicadas abaixo, executar raio de dobramento mínimo:

bitolas (Ø)	Raio de Dobra		
8	2.000		
10	2.500		
12.5	3.125		
16	4.000		
20	8.000		
25	10.00		

SP1.29575566.5500 552605.5500

 σ max [kg/cm2]

Nspt (na implantação)

Cota Implantação [m]

NÍVEL 6,670

R Dobra R Dobra

REFERÊNCIAS: 05-07_EEE_HIDRÁULICO 08_EEE_DETALHES

1. MEDIDAS EM CENTIMETROS, ELEVAÇÃO EM METROS, EXCETO INDICAÇÃO CONTRÁRIA

2. CONCRETO ESTRUTURAL: fck= 30MPa (300kg/cm2)

fator água/cimento (a/c) < 0,55 CA-50 CA-60

3. TODO ELEMENTO ESTRUTURAL EM CONTATO COM O SOLO DEVERÁ SER EXECUTADO SOBRE UM LASTRO DE NO MÍNIMO 5cm DE CONCRETO MAGRO COM TEOR DE CIMENTO > 250Kg/m3 (EXCETO QUANDO INDICADO)

4. CLASSE DE AGRESSIVIDADE ADOTADA: III (FORTE)

Cobrimento adotado: 5.0 cm: Faces de paredes, pilares e lajes

4.0 cm: Vigas

5. PROLONGAR A CURA DAS LAJES ATÉ 10 DIAS APÓS O FIM DA CONCRETAGEM

6. EXECUTAR JUNTAS DE CONCRETAGEM CONFORME DETALHE DO PROJETO. UMEDECER A ESTRUTURA COM ÁGUA 12 (DOZE) HORAS ANTES DA CONCRETAGEM, AS SUPERFÍCIES DE CONCRETO EXISTENTES DEVERÃO ESTAR ISENTAS DE RESÍDUOS DE QUALQUER NATUREZA

7. CONCRETAR LAJE DE FUNDO SEM JUNTAS DE CONCRETAGEM

8. OBSERVAÇÕES

8.1. Conferir medidas na obra.

8.2. Enchimentos quando existentes deverão ser executados em concreto simples com Fck > 15MPa (150Kg/cm2)

8.3. A locação dos furos para passagem de tubulações deve ser realizadas conforme projeto hidráulico de referência

8.4. Alterações nas características do projeto poderão ser realizadas desde que seja solicitada e concedida a anuência do projetista.

8.5. Quadro de quantidades está apresentado na primeira prancha desta estrutura

9. PARA O PROJETO E EXECUÇÃO DA ESTRUTURA AS NORMAS CITADAS ABAIXO DEVERÃO SER ATENDIDAS EM SUA VERSÃO MAIS ATUALIZADA:

• NBR 6120 (1980) — Cargas para o cálculo de estruturas de edificações

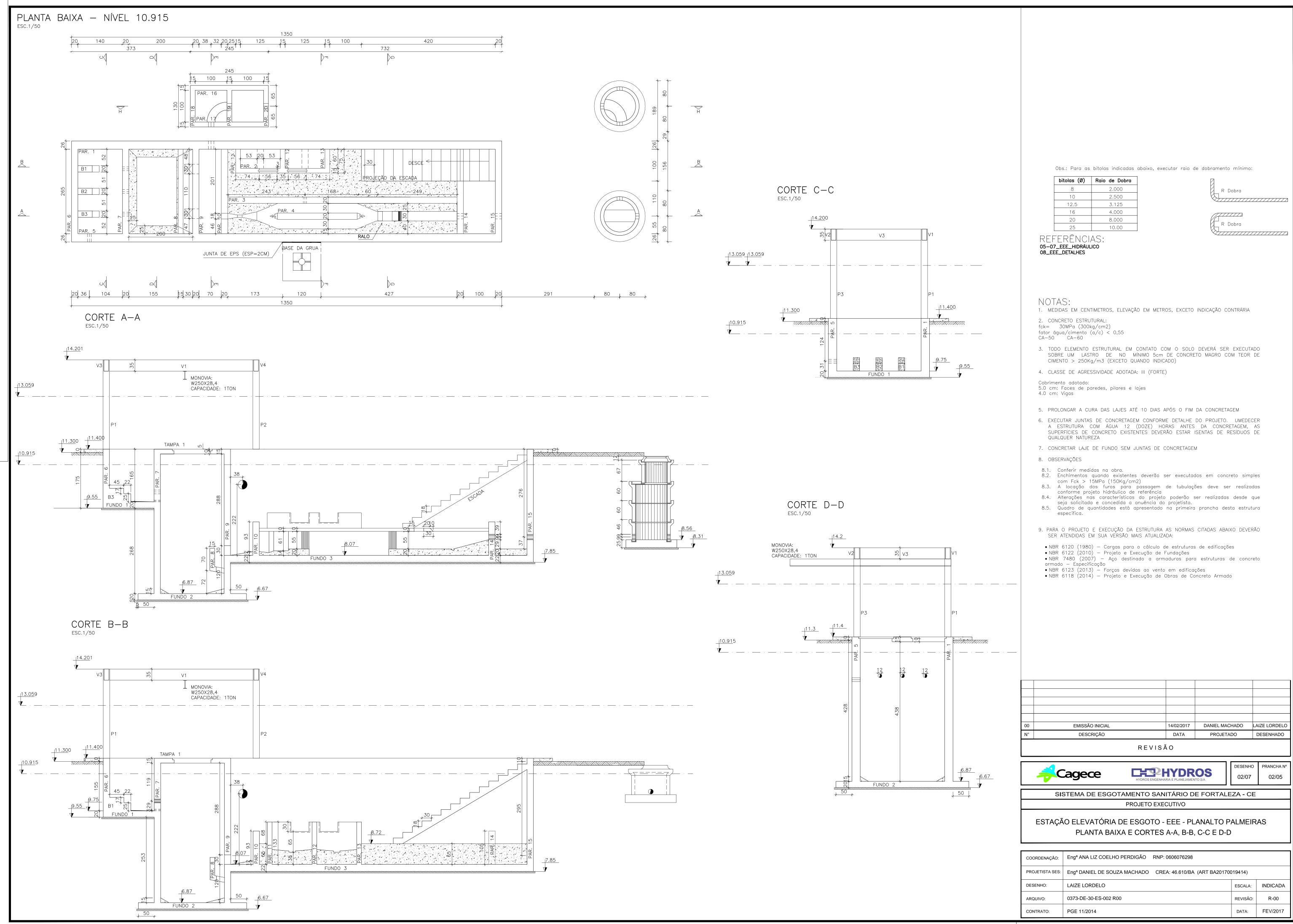
• NBR 6122 (2010) — Projeto e Execução de Fundações

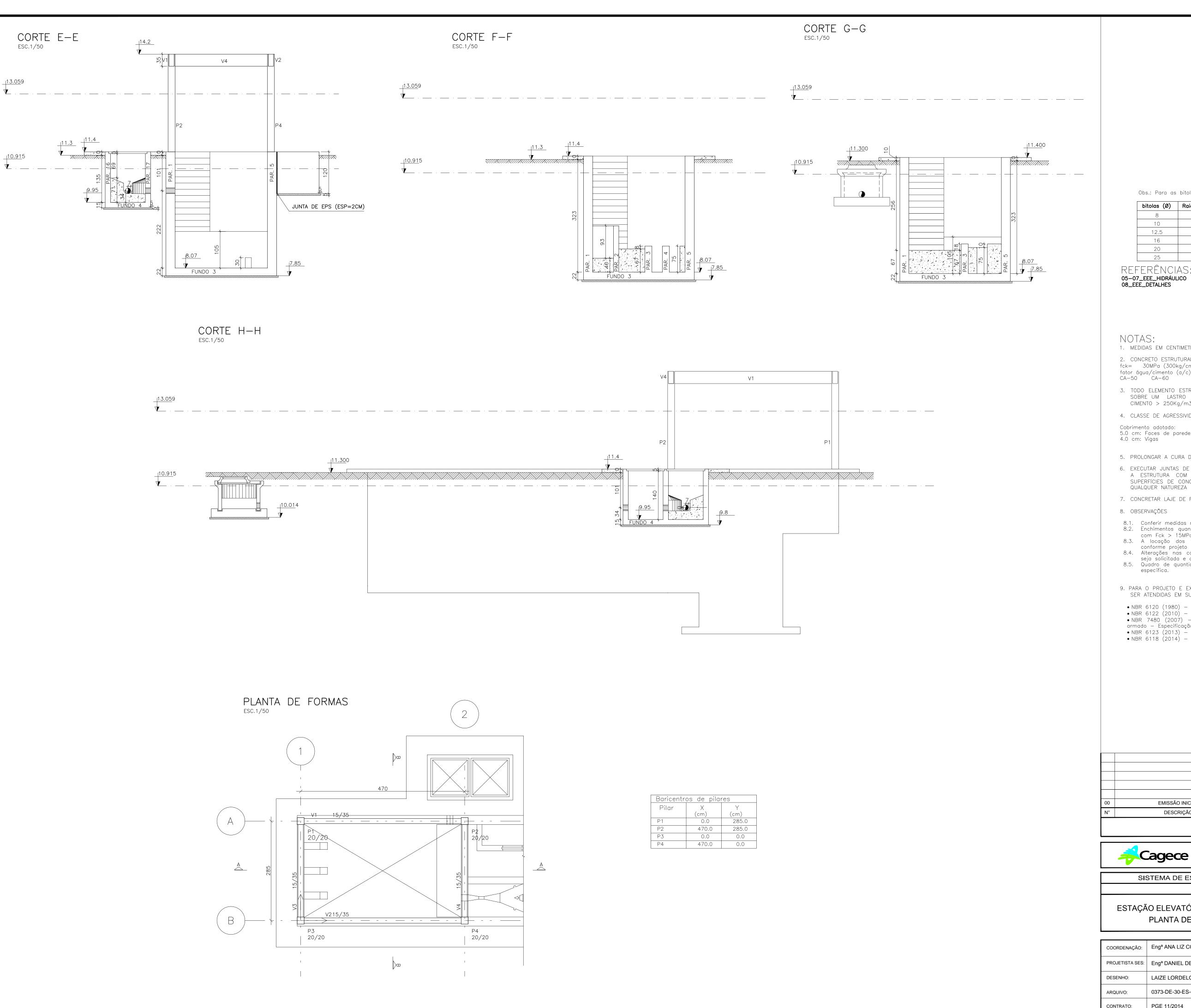
• NBR 7480 (2007) — Aço destinado a armaduras para estruturas de concreto armado — Especificação

• NBR 6123 (2013) - Forças devidas ao vento em edificações • NBR 6118 (2014) — Projeto e Execução de Obras de Concreto Armado

00	EMISSÃO INICIAL	14/02/2017	DANIEL MACHADO	LAIZE LORDEL
N°	DESCRIÇÃO	DATA	PROJETADO	DESENHADO

REVISAO


SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA - CE PROJETO EXECUTIVO


DESENHO

PRANCHA No

ESTAÇÃO ELEVATÓRIA DE ESGOTO - EEE - PLANALTO PALMEIRAS PLANTA BAIXA (FORMAS)

COORDENAÇÃO:	Eng ^a ANA LIZ COELHO PERDIGÃO RNP: 0606076298			
PROJETISTA SES:	Engª DANIEL DE SOUZA MACHADO CREA: 46.610/BA (ART BA20170019414)			
DESENHO:	LAIZE LORDELO	ESCALA:	INDICADA	
ARQUIVO:	0373-DE-30-ES-001 R00	REVISÃO:	R-00	
CONTRATO:	PGE 11/2014	DATA:	FEV/2017	

Obs.: Para as bitolas indicadas abaixo, executar raio de dobramento mínimo:

s (Ø)	Raio de Dobra
	2.000
0	2.500
.5	3.125
6	4.000
20	8.000
25	10.00

1. MEDIDAS EM CENTIMETROS, ELEVAÇÃO EM METROS, EXCETO INDICAÇÃO CONTRÁRIA

2. CONCRETO ESTRUTURAL:

fck= 30MPa (300kg/cm2) fator água/cimento (a/c) < 0,55 CA-50 CA-60

3. TODO ELEMENTO ESTRUTURAL EM CONTATO COM O SOLO DEVERÁ SER EXECUTADO SOBRE UM LASTRO DE NO MÍNIMO 5cm DE CONCRETO MAGRO COM TEOR DE CIMENTO > 250Kg/m3 (EXCETO QUANDO INDICADO)

4. CLASSE DE AGRESSIVIDADE ADOTADA: III (FORTE)

Cobrimento adotado: 5.0 cm: Faces de paredes, pilares e lajes 4.0 cm: Vigas

5. PROLONGAR A CURA DAS LAJES ATÉ 10 DIAS APÓS O FIM DA CONCRETAGEM

6. EXECUTAR JUNTAS DE CONCRETAGEM CONFORME DETALHE DO PROJETO. UMEDECER A ESTRUTURA COM ÁGUA 12 (DOZE) HORAS ANTES DA CONCRETAGEM, AS SUPERFÍCIES DE CONCRETO EXISTENTES DEVERÃO ESTAR ISENTAS DE RESÍDUOS DE QUALQUER NATUREZA

7. CONCRETAR LAJE DE FUNDO SEM JUNTAS DE CONCRETAGEM

8. OBSERVAÇÕES

8.1. Conferir medidas na obra. 8.2. Enchimentos quando existentes deverão ser executados em concreto simples

com Fck > 15MPa (150Kg/cm2)

8.3. A locação dos furos para passagem de tubulações deve ser realizadas conforme projeto hidráulico de referência

8.4. Alterações nas características do projeto poderão ser realizadas desde que

seja solicitada e concedida a anuência do projetista. 8.5. Quadro de quantidades está apresentado na primeira prancha desta estrutura

9. PARA O PROJETO E EXECUÇÃO DA ESTRUTURA AS NORMAS CITADAS ABAIXO DEVERÃO SER ATENDIDAS EM SUA VERSÃO MAIS ATUALIZADA:

• NBR 6120 (1980) — Cargas para o cálculo de estruturas de edificações

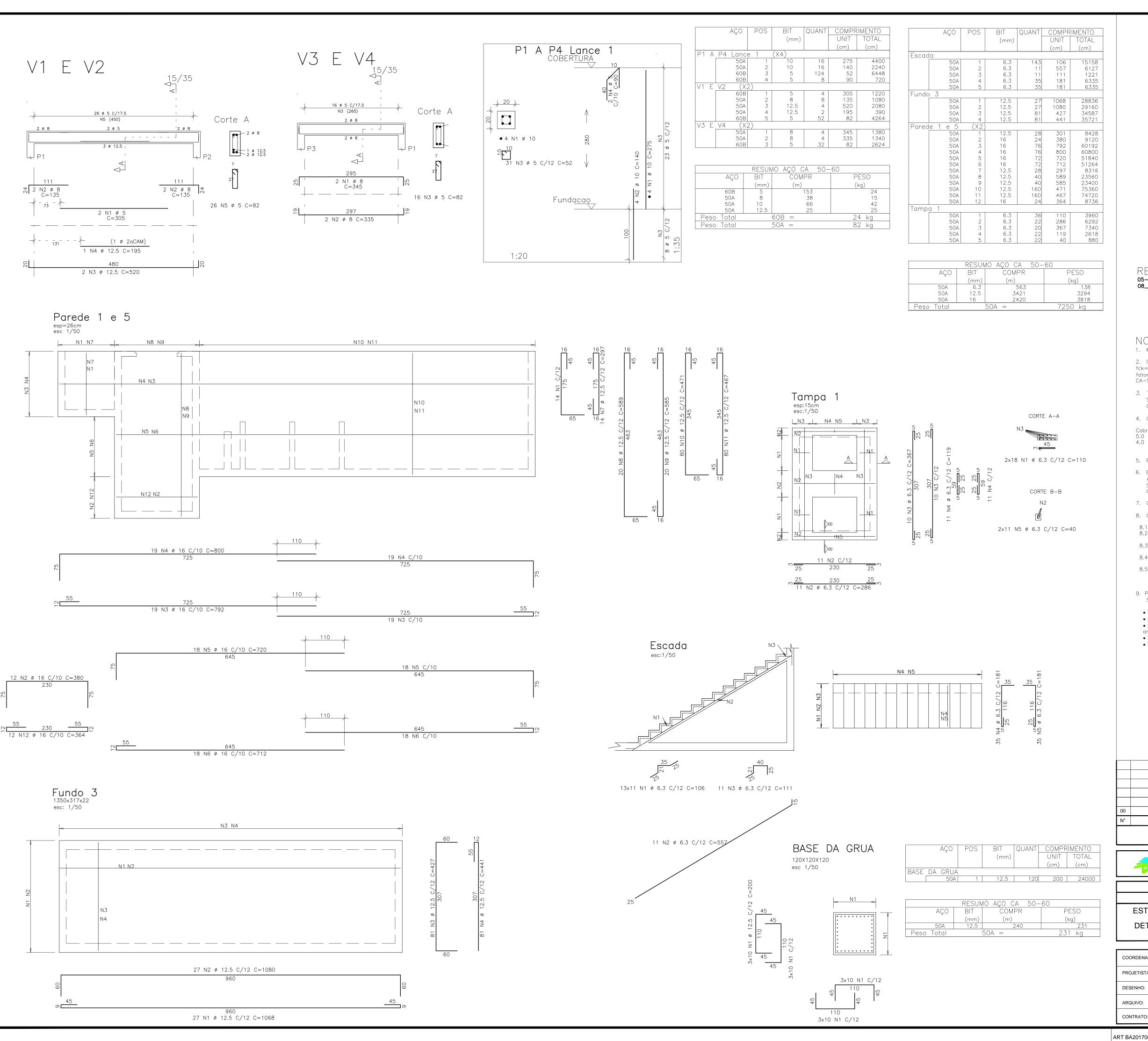
• NBR 6122 (2010) — Projeto e Execução de Fundações

• NBR 7480 (2007) — Aço destinado a armaduras para estruturas de concreto armado — Especificação

NBR 6123 (2013) — Forças devidas ao vento em edificações
NBR 6118 (2014) — Projeto e Execução de Obras de Concreto Armado

00	EMISSÃO INICIAL	14/02/2017	DANIEL MACHADO	LAIZE LORDELO
N°	DESCRIÇÃO	DATA	PROJETADO	DESENHADO
REVISÃO				

Cagece


CHIPHYDROS

DESENHO PRANCHA Nº 03/05

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA - CE PROJETO EXECUTIVO

ESTAÇÃO ELEVATÓRIA DE ESGOTO - EEE - PLANALTO PALMEIRAS PLANTA DE FORMAS E CORTES E-E, F-F, G-G E H-H

COORDENAÇÃO:	Eng ^a ANA LIZ COELHO PERDIGÃO RNP: 0606076298			
PROJETISTA SES:	Eng ^a DANIEL DE SOUZA MACHADO CREA: 46.610/BA (ART BA20170019414)			
DESENHO:	LAIZE LORDELO	ESCALA:	INDICADA	
ARQUIVO:	0373-DE-30-ES-003 R00	REVISÃO:	R-00	
CONTRATO:	PGE 11/2014	DATA:	FEV/2017	

Obs.: Para as bitolas indicadas abaixo, executar raio de dobramento mínimo:

bitolas (Ø)	Raio de Dobra
8	2.000
10	2.500
12.5	3.125
16	4.000
20	8.000
25	10.00

R Dobra

R Dobra

REFERÊNCIAS: 05-07_EEE_HIDRÁULICO 08_EEE_DETALHES

1. MEDIDAS EM CENTIMETROS, ELEVAÇÃO EM METROS, EXCETO INDICAÇÃO CONTRÁRIA

2. CONCRETO ESTRUTURAL: fck= 30MPa (300kg/cm2)

fator água/cimento (a/c) < 0,55 CA-50 CA-60

3. TODO ELEMENTO ESTRUTURAL EM CONTATO COM O SOLO DEVERÁ SER EXECUTADO SOBRE UM LASTRO DE NO MÍNIMO 5cm DE CONCRETO MAGRO COM TEOR DE CIMENTO > 250Kg/m3 (EXCETO QUANDO INDICADO)

4. CLASSE DE AGRESSIVIDADE ADOTADA: III (FORTE)

Cobrimento adotado: 5.0 cm: Faces de paredes, pilares e lajes

4.0 cm: Vigas

5. PROLONGAR A CURA DAS LAJES ATÉ 10 DIAS APÓS O FIM DA CONCRETAGEM

6. EXECUTAR JUNTAS DE CONCRETAGEM CONFORME DETALHE DO PROJETO. UMEDECER A ESTRUTURA COM ÁGUA 12 (DOZE) HORAS ANTES DA CONCRETAGEM, AS SUPERFÍCIES DE CONCRETO EXISTENTES DEVERÃO ESTAR ISENTAS DE RESÍDUOS DE QUALQUER NATUREZA

7. CONCRETAR LAJE DE FUNDO SEM JUNTAS DE CONCRETAGEM

8. OBSERVAÇÕES

8.1. Conferir medidas na obra.

8.2. Enchimentos quando existentes deverão ser executados em concreto simples

com Fck > 15MPa (150Kg/cm2) 8.3. A locação dos furos para passagem de tubulações deve ser realizadas conforme projeto hidráulico de referência

8.4. Alterações nas características do projeto poderão ser realizadas desde que

seja solicitada e concedida a anuência do projetista. 8.5. Quadro de quantidades está apresentado na primeira prancha desta estrutura

9. PARA O PROJETO E EXECUÇÃO DA ESTRUTURA AS NORMAS CITADAS ABAIXO DEVERÃO SER ATENDIDAS EM SUA VERSÃO MAIS ATUALIZADA:

• NBR 6120 (1980) — Cargas para o cálculo de estruturas de edificações • NBR 6122 (2010) — Projeto e Execução de Fundações

• NBR 7480 (2007) — Aço destinado a armaduras para estruturas de concreto armado — Especificação

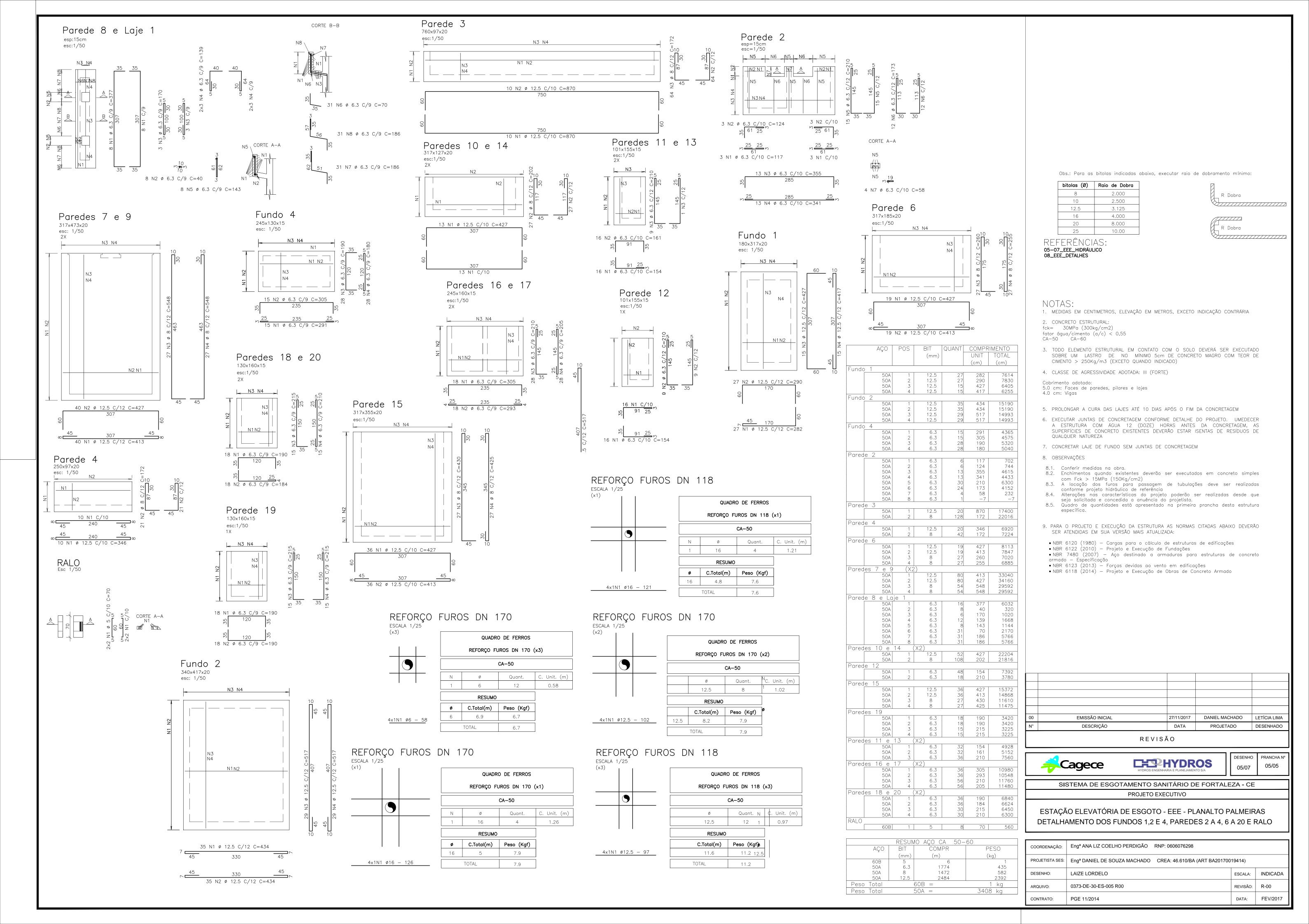
NBR 6123 (2013) — Forças devidas ao vento em edificações
NBR 6118 (2014) — Projeto e Execução de Obras de Concreto Armado

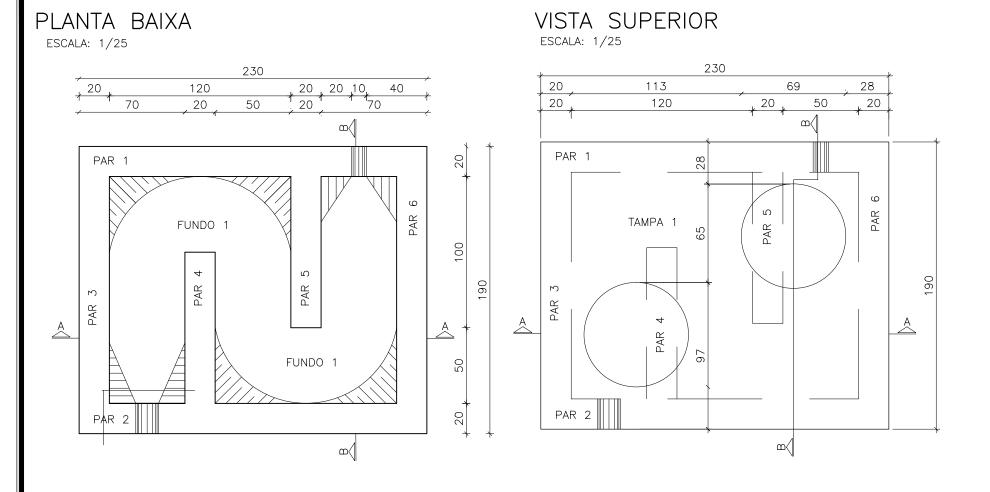
DANIEL MACHADO LAIZE LORDELO EMISSÃO INICIAL DESCRIÇÃO DATA PROJETADO DESENHADO

REVISÃO

Cagece

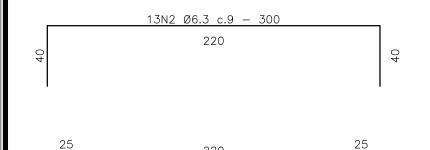
CHIPHYDROS

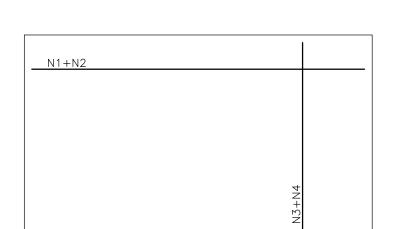

DESENHO PRANCHA Nº 04/05

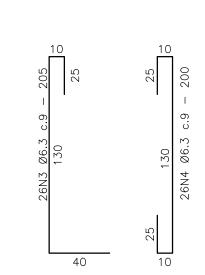

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA - CE PROJETO EXECUTIVO

ESTAÇÃO ELEVATÓRIA DE ESGOTO - EEE - PLANALTO PALMEIRAS

DETALHAMENTO DOS FUNDO 3, PAREDES 1 E 5, TAMPA 1, ESCADA BASE DA GRUA, VIGAS 1 A 4 E PILARES 1 A 4


COORDENAÇÃO:	Eng ^a ANA LIZ COELHO PERDIGÃO RNP: 0606076298		
PROJETISTA SES:	Engª DANIEL DE SOUZA MACHADO CREA: 46.610/BA (ART BA201700	19414)	
DESENHO:	LAIZE LORDELO	ESCALA:	INDICADA
ARQUIVO:	0373-DE-30-ES-004 R00	REVISÃO:	R-00
CONTRATO:	PGE 11/2014	DATA:	FEV/2017



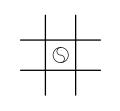

PAREDES 1 E 2

ESCALA 1/25 (230x140x20)

13N1 Ø6.3 c.9 - 286

	QUADRO DE FERROS				
PAREDES 1 E 2(x2)					
		CA-50			
N	Ø	Quant.	C. Unit. (m)		
1	6.3	26	2.86		
2	6.3	26	3		
3	6.3	52	2.05		
4	6.3	52	2.00		
RESUMO					

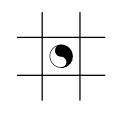
88.9

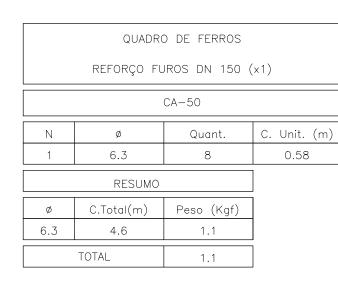

88.9

Ø C.Total(m) Peso (Kgf)

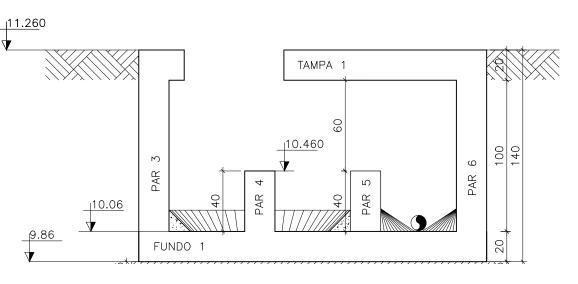
362.96

6.3

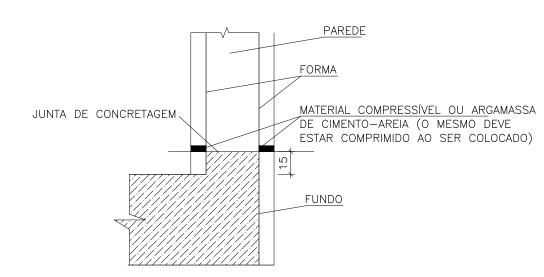

REFORÇO FUROS DN 100 ESCALA 1/25


4x<u>2N1_</u>Ø6.3___53

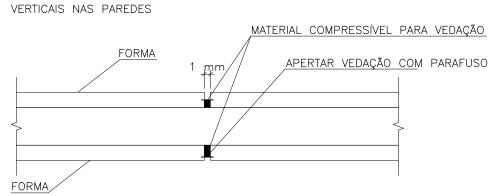
	QUADRO DE FERROS				
	REFORÇO FUROS DN 100 (x1)				
	CA-50				
N	Ø	Quant.	C. Unit. (m)		
1	6.3	8	0.53		
	RESUMO				
Ø	C.Total(m)	Peso (Kgf)			
6.3					
	TOTAL	1]		


REFORÇO FUROS DN 150 ESCALA 1/25

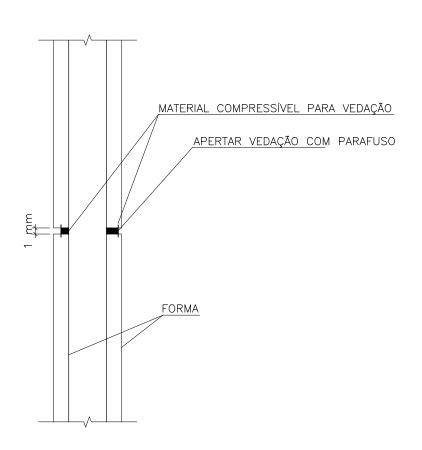
×2N1	ø6.3	_	58	

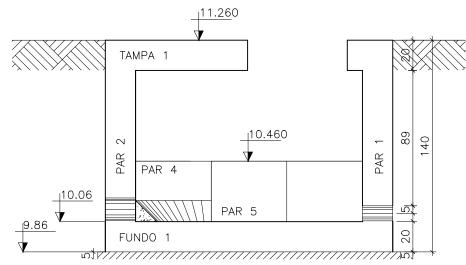


CORTE A-A ESCALA: 1/25

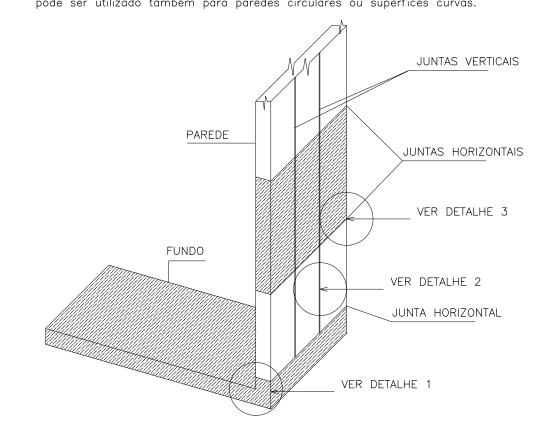


PROCEDIMENTOS DE CONCRETAGEM


DETALHE 1 SEM ESCALA MONTAGEM PRÓXIMO A JUNTAS ENTRE FUNDO E PAREDES

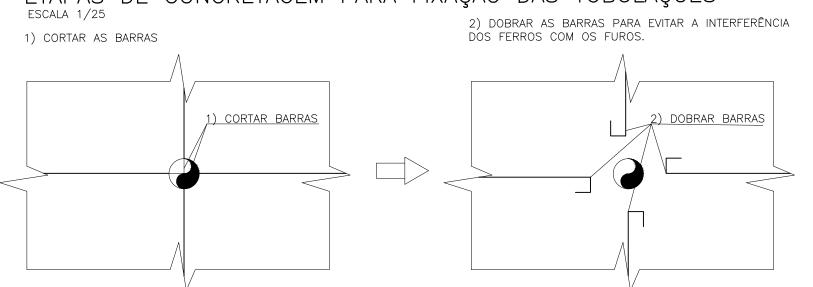

DETALHE 2 MONTAGEM PRÓXIMO A JUNTAS

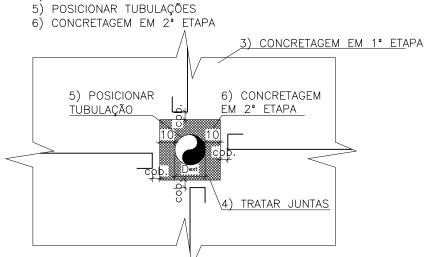
DETALHE 3 MONTAGEM PRÓXIMO A JUNTAS HORIZONTAIS NAS PAREDES


CORTE B-B ESCALA: 1/25

PLANO DE CONCRETAGEM ESQUEMÁTICO

1—Realizar tratamento das juntas de concretagem com Corte Verde a cada, no máximo, 180cm concretados verticalmente e horizontalmente utilizando jato de água sob pressão.


OBS: Os detalhes apresentados são genéricos e esquemáticos e portanto, não consideram O objetivo deste detalhe é somente especificar os procedimentos referentes à juntas de concretagem. Portanto, apesar de indicar paredes retangulares no desenho esquemático, pode ser utilizado também para paredes circulares ou superfíces curvas.


Planilha de Quantidades

CAIXA DE QUEBRA		
PAREDES		
Concreto Estrutural fck=30 MPa	m ³	2,60
Formas	m²	26,40
FUNDO		
Concreto Estrutural fck=30 MPa	m³	0,90
Formas	m²	1,70
Concreto Magro	m³	0,20
TAMPA		
Concreto Estrutural fck=30 MPa	m³	0,80
Formas	m²	4,00
TOTAL		
Concreto Estrutural fck=30 MPa	m³	4,30
Concreto Magro	m³	0,20
Formas	m²	32,10
Armadura(CA-50)	kg	322,67

ETAPAS DE CONCRETAGEM PARA FIXAÇÃO DAS TUBULAÇÕES

3) CONCRETAGEM EM 1º ETAPA 4) TRATAR JUNTAS COM APICOAMENTO OU CORTE VERDE

Obs.: Para as bitolas indicadas abaixo, executar raio de dobramento mínimo:

s (Ø)	Raio de Dobra
}	2.000
)	2.500
.5	3.125
5	4.000
0	8.000
5	10.00

LEGENDA:

FURO (EM VISTA) PARA PASSAGEM DE TUBULAÇÃO

REFERÊNCIAS:

09_EEE_LR

NOTAS:

1. MEDIDAS EM CENTIMETROS, ELEVAÇÃO EM METROS, EXCETO INDICAÇÃO CONTRÁRIA

2. CONCRETO ESTRUTURAL: fck= 30MPa (300kg/cm2) fator água/cimento (a/c) < 0,55 CA-50 CA-60

- 3. TODO ELEMENTO ESTRUTURAL EM CONTATO COM O SOLO DEVERÁ SER EXECUTADO SOBRE UM LASTRO DE NO MÍNIMO 5cm DE CONCRETO MAGRO COM TEOR DE CIMENTO > 250Kg/m3 (EXCETO QUANDO INDICADO)
- 4. CLASSE DE AGRESSIVIDADE ADOTADA: III (FORTE)

Cobrimento adotado:

5.0 cm: todos os elementos estruturais

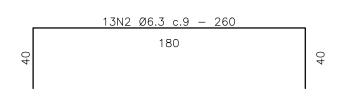
- 5. PROLONGAR A CURA DAS LAJES ATÉ 10 DIAS APÓS O FIM DA CONCRETAGEM
- 6. EXECUTAR JUNTAS DE CONCRETAGEM CONFORME DETALHE DO PROJETO. UMEDECER A ESTRUTURA COM ÁGUA 12 (DOZE) HORAS ANTES DA CONCRETAGEM, AS SUPERFÍCIES DE CONCRETO EXISTENTES DEVERÃO ESTAR ISENTAS DE RESÍDUOS DE
- 7. CONCRETAR LAJE DE FUNDO SEM JUNTAS DE CONCRETAGEM
- 8. OBSERVAÇÕES
- 8.1. Conferir medidas na obra.
- 8.2. Enchimentos quando existentes deverão ser executados em concreto simples com Fck > 15MPa (150Kg/cm2)
- 8.3. A locação dos furos para passagem de tubulações deve ser realizadas conforme projeto hidráulico de referência
- 8.4. Alterações nas características do projeto poderão ser realizadas desde que seja solicitada e concedida a anuência do projetista.
- 8.5. Quadro de quantidades está apresentado na primeira prancha desta estrutura específica.
- 9. PARA O PROJETO E EXECUÇÃO DA ESTRUTURA AS NORMAS CITADAS ABAIXO DEVERÃO SER ATENDIDAS EM SUA VERSÃO MAIS ATUALIZADA:
- NBR 6120 (1980) Cargas para o cálculo de estruturas de edificações
- NBR 6122 (2010) Projeto e Execução de Fundações
- NBR 7480 (2007) Aço destinado a armaduras para estruturas de concreto armado — Especificação
- NBR 6123 (2013) Forças devidas ao vento em edificações
 NBR 6118 (2014) Projeto e Execução de Obras de Concreto Armado

0	EMISSÃO INICIAL	14/02/2017	DANIEL DE S. MACHADO	LAIZE
N°	DESCRIÇÃO	DATA	PROJETADO	DESENHADO

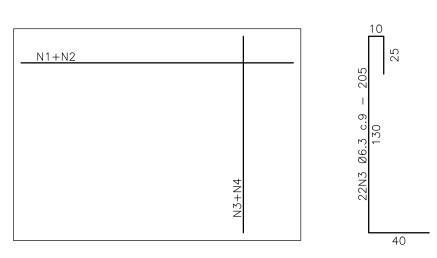
REVISÃO

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA - CE

PROJETO EXECUTIVO PLANALTO PALMEIRAS


CAIXA DE QUEBRA DE PRESSÃO PLANTA BAIXA, VISTA SUPERIOR, CORTE A E B , DETALHAMENTO PAREDES 1 E 2 (FORMAS E ARMADURAS)

ORDENAÇÃO:	Eng ^a ANA LIZ COELHO PERDIGÃO RNP: 0606076298		
OJETISTA SES:	Engª DANIEL DE SOUZA MACHADO CREA: 46.610/BA (ART BA201700	19414)	
SENHO:	LAIZE	ESCALA:	INDICADA
QUIVO:	0373-DE-30-ES-006 R00	REVISÃO:	R-00
NTRATO:	PGE 11/2014	DATA:	FEV/2017



ESCALA 1/25 (190x113x20)

(x2)

13N1 Ø6.3 c.9 - 246

	QUADRO DE FERROS			
	PAREDE	ES 3 E 6(x2)		
		CA-50		
N	Ø	Quant.	C. Unit. (m)	
1	6.3	26	2.46	
2	6.3	26	2.6	
3	6.3	44	2.05	
4	6.3	44	2.00	
	RESUMO			
Ø	C.Total(m)	Peso (Kgf)		
6.3	309.76	75.9		
	TOTAL	75.9		

PAREDES 4 E 5

ESCALA 1/25 (120x60x20)

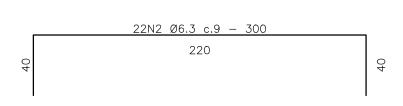
(x2)

		ſΩ	
N1+N2		0 1 7 2 2	10
	N + N + N + N + N + N + N + N + N + N +	25	25
	Ž	5.0	50
		Σ N 40	
		4 40	40

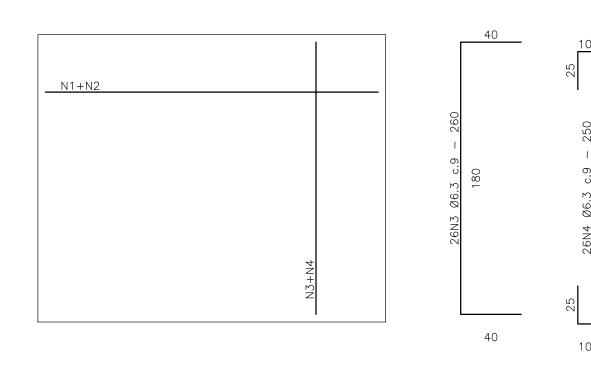
TAMPA 1

esp 20cm

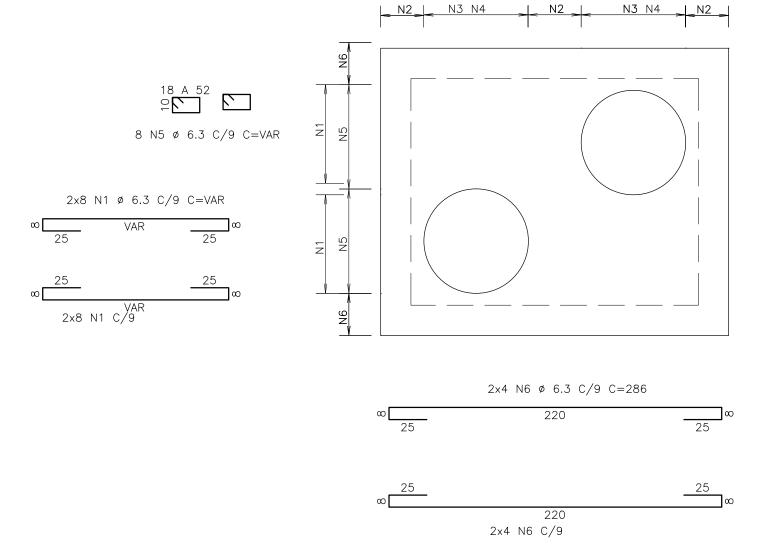
esc 1/25


QUADRO DE FERROS					
PAREDES 4 E 5(x2)					
	CA-50				
N	Ø	Quant.	C. Unit. (m)		
1	6.3	14	1.83		
2	6.3	14	1.83		
3	6.3	28	1.25		
4	6.3	28	1.25		
RESUMO					
Ø	C.Total(m)	Peso (Kgf)			
6.3	121.24	29.7			

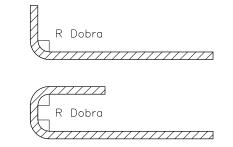
29.7


TOTAL

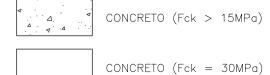
FUNDO 1


ESCALA 1/25 (230×190×20)

QUADRO DE FERROS			
	FUI	NDO 1(x1)	
		CA-50	
N	Ø	Quant.	C. Unit. (m)
1	6.3	22	2.86
2	6.3	22	3
3	6.3	26	2.6
4	6.3	26	2.5
	RESUMO		
Ø	C.Total(m)	Peso (Kgf)	
6.3	261.52	64.07	
	TOTAL	64.07	
		•	_


	ACO	POS	BIT	QUANT	COMPR	RIMENTO
	70	105	(mm)	QUAINI	UNIT	TOTAL
			(,		(cm)	(cm)
TAMPA 1	TAMPA 1					
	50A	1	6.3	32	VAR-	6304
	50A	2	6.3	24	250	6000
	50A	3	6.3	16	VAR-	1664
	50A	4	6.3	32	VAR-	5152
	50A	5	6.3	16	VAR-	1664
	50A	6	6.3	16	286	4576

2x8 N3 Ø 6.3 C/9 C=VAR


	RESUM	10 AÇO CA 50-	60
AÇO	BIT	COMPR	PES0
· ·	(mm)	(m)	(kg)
50A	6.3	254	62
Pesa Total		50A =	62 ka

Obs.: Para as bitolas indicadas abaixo, executar raio de dobramento mínimo:

bitolas (Ø)	Raio de Dobra
8	2.000
10	2.500
12.5	3.125
16	4.000
20	8.000
25	10.00
·	

LEGENDA:

FURO (EM VISTA) PARA PASSAGEM DE TUBULAÇÃO

REFERÊNCIAS:

09_EEE_LR

NOTAS:

1. MEDIDAS EM CENTIMETROS, ELEVAÇÃO EM METROS, EXCETO INDICAÇÃO CONTRÁRIA

2. CONCRETO ESTRUTURAL: fck= 30MPa (300kg/cm2) fator água/cimento (a/c) < 0,55 CA-50 CA-60

- 3. TODO ELEMENTO ESTRUTURAL EM CONTATO COM O SOLO DEVERÁ SER EXECUTADO SOBRE UM LASTRO DE NO MÍNIMO 5cm DE CONCRETO MAGRO COM TEOR DE CIMENTO > 250Kg/m3 (EXCETO QUANDO INDICADO)
- 4. CLASSE DE AGRESSIVIDADE ADOTADA: III (FORTE)

Cobrimento adotado: 5.0 cm: todos os elementos estruturais

- 5. PROLONGAR A CURA DAS LAJES ATÉ 10 DIAS APÓS O FIM DA CONCRETAGEM
- 6. EXECUTAR JUNTAS DE CONCRETAGEM CONFORME DETALHE DO PROJETO. UMEDECER A ESTRUTURA COM ÁGUA 12 (DOZE) HORAS ANTES DA CONCRETAGEM, AS SUPERFÍCIES DE CONCRETO EXISTENTES DEVERÃO ESTAR ISENTAS DE RESÍDUOS DE
- 7. CONCRETAR LAJE DE FUNDO SEM JUNTAS DE CONCRETAGEM
- 8. OBSERVAÇÕES
- 8.1. Conferir medidas na obra. 8.2. Enchimentos quando existentes deverão ser executados em concreto simples com Fck > 15MPa (150Kg/cm2)
- 8.3. A locação dos furos para passagem de tubulações deve ser realizadas conforme projeto hidráulico de referência
- 8.4. Alterações nas características do projeto poderão ser realizadas desde que seja solicitada e concedida a anuência do projetista.
 8.5. Quadro de quantidades está apresentado na primeira prancha desta estrutura
- 9. PARA O PROJETO E EXECUÇÃO DA ESTRUTURA AS NORMAS CITADAS ABAIXO DEVERÃO SER ATENDIDAS EM SUA VERSÃO MAIS ATUALIZADA:

• NBR 6120 (1980) — Cargas para o cálculo de estruturas de edificações • NBR 6122 (2010) — Projeto e Execução de Fundações • NBR 7480 (2007) — Aço destinado a armaduras para estruturas de concreto

armado — Especificação

NBR 6123 (2013) - Forças devidas ao vento em edificações
NBR 6118 (2014) - Projeto e Execução de Obras de Concreto Armado

0	EMISSÃO INICIAL	14/02/2017	DANIEL DE S. MACHADO	LAIZE		
N°	DESCRIÇÃO	DATA	PROJETADO	DESENHADO		

REVISÃO

DESENHO PRANCHA Nº 07/07 02/02

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA - CE PROJETO EXECUTIVO PLANALTO PALMEIRAS

CAIXA DE QUEBRA DE PRESSÃO DETALHAMENTO DAS PAREDES 3, 4, 5 E 6, FUNDO 1 E TAMPA 1 (ARMADURAS)

COORDENAÇÃO:	Eng ^a ANA LIZ COELHO PERDIGÃO RNP: 0606076298			
PROJETISTA SES:	Eng ^a DANIEL DE SOUZA MACHADO CREA: 46.610/BA (ART BA20170019414)			
DESENHO:	LAIZE	ESCALA:	INDICADA	
ARQUIVO:	0373-DE-30-ES-007 R00	REVISÃO:	R-00	
CONTRATO:	PGE 11/2014	DATA:	FEV/2017	