Companhia de Água e Esgoto do Ceará

DEN - Diretoria de Engenharia GPROJ - Gerência de Projetos de Engenharia

Fortaleza - CE Bairro Castelão

Projeto Básico da Via de Acesso ao IMA-3, localizado no Centro Espiritual Uirapuru - CEU

VOLUME ÚNICO

Cagece - Companhia de Água e Esgoto do Ceará

DEN - Diretoria de Engenharia GPROJ - Gerência de Projetos

EQUIPE TÉCNICA DA GPROJ – Gerência de Projetos

Produto: Projeto Básico da Via de Acesso ao IMA-3, localizado no Centro Espiritual Uirapuru - CEU

Gerente de Projetos

Engº. Raul Tigre de Arruda Leitão

Coordenação de Projetos Técnicos

Engº. Bruno Cavalcante de Queiroz

Engenheiro Projetista

Engº. Wellington Santiago Lopes

Engenheiro Estrutural

Engº. Victor Gurgel Reis

Topografia

Regina Célia Brito da Silva César Antônio de Sousa

Desenhos

Sebastião Barroso Lima Paulo Helano Pinheiro Veras Bárbara Kelly Silva Lima Rodrigues

Edição

Janis Joplin Saara Moura Queiroz

Arquivo Técnico

Patrícia Santos Silva

Colaboração

Ana Beatriz de Oliveira Montezuma Gleiciane Cavalcante Gomes

Projeto Básico

I - SUMÁRIO

1	DESCRIÇÃO DA OBRA	3
2	NORMAŠ UTILIZADAS	3
3	ARQUIVOS DE REFERÊNCIA	3
4	REQUISITOS DE DURABILIDADE E MATERIAIS	4
5	MODELO ESTRUTURAL	_
6	~	9
7	DIMENSIONAMENTO GEOTÉCNICO DAS FUNDAÇÕES	
8	DIMENSIONAMENTO ESTRUTURAL	
9	ESPECIFICAÇÕES TÉCNICAS	22
9.1	Concreto C40	
	Formas	
9.3	Armaduras passivas e ativas	
	Estacas	00
9.5	Mata-juntas entre o tabuleiro e a viga-travessa	24
	Mata-juntas entre a viga-travessa e a laje de transição	
	Aparelhos de apoio de elastômero fretado	
	Graute de base epóxi	
	Graute de base cimento	
	ART	27
11	PEÇAS GRÁFICAS	30

Memorial Descritivo

1 DESCRIÇÃO DA OBRA

A Ponte do Condomínio Espiritual Uirapuru cruza o chamado Riacho Martinho próximo à Avenida Alberto Craveiro, em Fortaleza, CE. Ela foi projetada como uma compensação dada pela Cagece em troca do uso do terreno para a passagem do interceptor IMA-3, que já está executado.

2 NORMAS UTILIZADAS

O projeto foi elaborado sob os critérios dados nas seguintes normas da Associação Brasileira de Normas Técnicas (ABNT):

- NBR 6118:2014 Projeto de estruturas de concreto procedimento;
- NBR 6120:1980 Cargas para o cálculo de estruturas de edificações;
- NBR 6122:2010 Projeto e execução de fundações;
- NBR 7187:2003 Projeto de pontes de concreto armado e protendido procedimento;
- NBR 7188:2013 Carga móvel rodoviária e de pedestres em pontes, viadutos, passarelas e outras estruturas;
- NBR 8681:2003 Ações e segurança nas estruturas procedimento;
- NBR 9062:2017 Projeto e execução de estruturas de concreto pré-moldado;
- NBR 12655:2015 Concreto de cimento Portland preparo, controle, recebimento e aceitação – procedimento.

3 ARQUIVOS DE REFERÊNCIA

O projeto foi desenvolvido com base nas informações do projeto hidráulico fornecido.

- Fortaleza_CEU_Santíssima_Trindade_00.00_LR_01-02.02
- Fortaleza_CEU_Santíssima_Trindade_00.00_LR_01-02.02-CP
- Fortaleza_CEU_Santíssima_Trindade_00.00_LR_01-01_LAY.

4 REQUISITOS DE DURABILIDADE E MATERIAIS

De acordo com a tabela 13.4 da NBR 6118, o caso de pré-tração em classe de agressividade ambiental III exige protensão completa (nível 3).

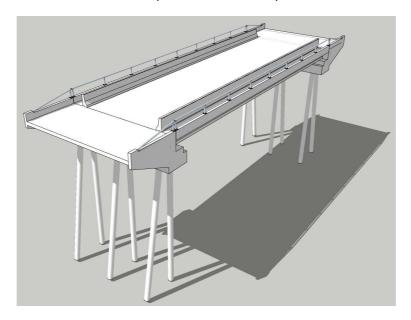
Essa condição determina que sejam verificados o estado-limite de serviço de descompressão na combinação rara e o estado-limite de fissuração na combinação quase permanente.

A fim de atender a esses critérios de exposição, foram adotados então os parâmetros de projeto listados a seguir.

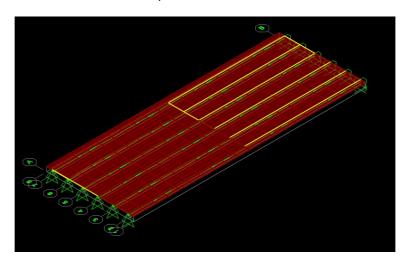
Parâmetro	Valor
Classe de agressividade ambiental	III
Mínima resistência à compressão característica	40 MPa
Máxima relação água/cimento em massa	0,45
Consumo mínimo de cimento	320 kg/m ³
Cobrimento das travessas e estacas	4,0 cm
Cobrimento das vigas	3,5 cm
Cobrimento das lajes	3,5 cm
Abertura teórica máxima de fissuras em combinação frequente - fundo das longarinas	0,00 mm
Tipo de protensão	Completa (Nível 3)

Os materiais selecionados estão listados na tabela a seguir:

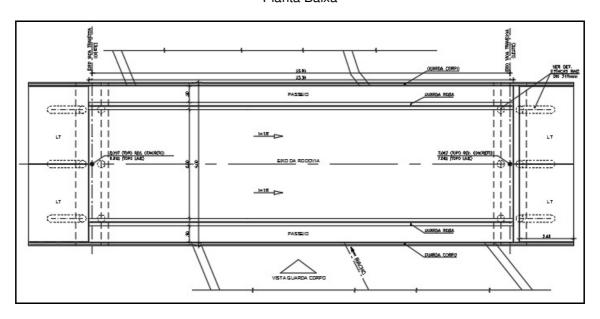
Aplicação	Material adotado	Norma de referência
Lajes, vigas, alas, travessas e estacas	Concreto C40	NBR 12.655
Armadura passiva	Aços CA-50 e CA-60	NBR 7480
Armadura ativa	Aço CP-190 RB	NBR 7483
Aparelho de apoio de elastômero	Elastômero Shore A 50	NBR 19.783
fretado	Aço CF-21	NBR 6650
Mata-juntas entre o tabuleiro e a viga travessa	Perfil elastomérico tipo 1	NBR 12.624
Mata-juntas entre a viga travessa e a laje de transição	Selante de poliuretano flexível	NBR 8515


5 MODELO ESTRUTURAL

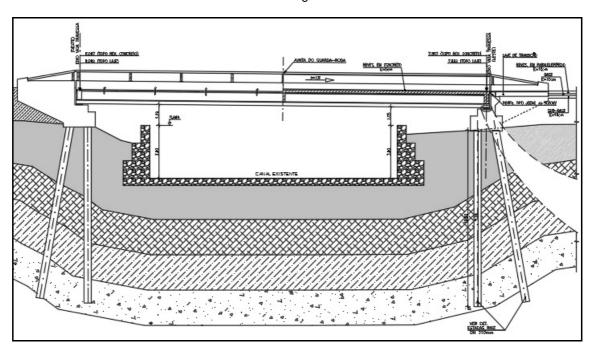
A estrutura foi modelada usando elementos de placa (*shell*) para o tabuleiro, elementos de barra (*beam*) para as travessas, longarinas, transversinas e estacas e elementos de cabo (*tendon*) para as cordoalhas de protensão. Foi considerada redução de 85% na rigidez à torção tanto das placas quanto das barras para análise dos efeitos elásticos do carregamento sobre a estrutura.


Foi utilizado o programa computacional SAP2000 v. 20 para a criação do modelo, utilizando discretização em malha de elementos finitos de placa esbelta, considerando os materiais listados na seção anterior.

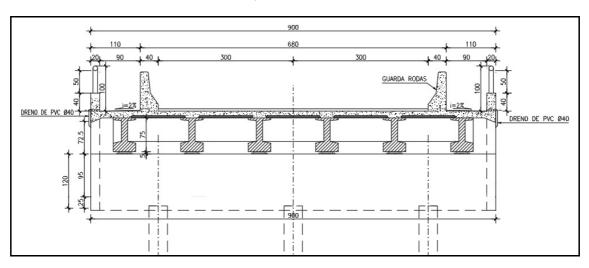
Perspectiva no Sketch Up



Perspectiva no SAP2000



Planta Baixa



Corte Longitudinal

Seção Transversal

Os dados básicos de entrada sobre os materiais na modelagem são os seguintes:

Material	Critério	Valor adotado
	Massa específica	2,50 tf/m ³
Concreto	Resistência caract. à compressão	40 MPa
	Módulo de elasticidade secante	31 GPa
Ass dos	Massa específica	7,85 tf/m ³
Aço dos fios e barras	Resistência caract. à tração no escoamento	500 MPa
Darras	Módulo de elasticidade	210 GPa
	Massa específica	7,85 tf/m ³
Aço das cordoalhas	Resistência caract. à tração no escoamento	1900 MPa
	Módulo de elasticidade	200 GPa
Solo	Massa específica	1,80 tf/m ³
3010	Coeficiente de empuxo ativo	0,50

6 CARREGAMENTOS E COMBINAÇÕES

Após analisar as condições de implantação e de utilização da obra, os casos de carregamentos adotados foram os seguintes:

Caso	Descrição	Valor
1	Peso próprio laje	0,38 tf/m ²
2	Peso próprio longarina	0,50 tf/m
3	Peso próprio transversina	0,33 tf/m
4	Peso próprio guarda-roda	0,55 tf/m
5	Peso próprio guarda-corpo	0,25 tf/m
6	Peso próprio travessa	5,75 tf/m
7	Revestimento de concreto h=5 cm	0,13 tf/m ²
8	Sobrecarga de utilização do tabuleiro	0,50 tf/m ²
9	Sobrecarga horizontal no guarda-corpo	0,08 tf/m
10	Sobrecarga vertical no guarda-corpo	0,20 tf/m
11	Sobrecarga horizontal no guarda-roda	0,20 tf/m
12	Empuxo horizontal de solo nas alas	0,00 a 1,89 tf/m ²
13	Vento - horizontal na direção curta do tabuleiro	2,91 tf
14	Protensão em vigas (equivalente)	- 1,38 tf/m
15	Veículo TB-450 - horizontal de frenagem / aceleração	13,50 tf
16	Veículo TB-450 - verticais	6 x 7,50 tf + 0,50 tf/m ²

Quanto às combinações, foram utilizadas as combinações últimas normais com os coeficientes constantes na NBR 8681 e na NBR 6118.

Para o cálculo da protensão, foram adotadas as combinações frequente de serviço para o estado-limite de formação de fissuras (ELS-F) e a rara de serviço para o estado limite de descompressão (ELS-D), como convém ao cálculo com protensão nível 3.

7 DIMENSIONAMENTO GEOTÉCNICO DAS FUNDAÇÕES

Foram realizadas duas sondagens à percussão tipo SPT até o impenetrável à percussão, cada uma no centro da projeção de cada encontro da ponte.

O solo local apresentou características predominantemente de areia com pedregulhos, exibindo também presença de argila em menor quantidade.

Considerando que os furos foram realizados no mês de outubro (período seco na região de Fortaleza, portanto), e que ainda assim a cota do lençol freático apareceu elevada (1,2 m de profundidade no melhor caso e 0,5 m no pior), combinando essa informação e visando à redução do prazo de obra em relação à consideração dos serviços de escavação, rebaixamento temporário de lençol freático e construção de fundações diretas, optou-se pelo uso de fundações profundas.

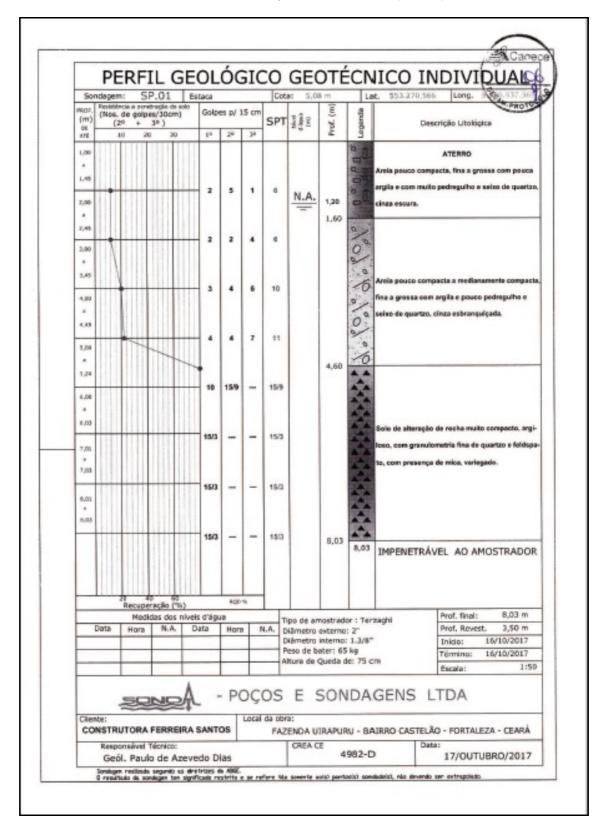
A cada camada de um metro de profundidade corresponde um número de golpes no ensaio SPT e, consequentemente, uma resistência lateral e à camada de assentamento da ponta corresponde resistência lateral e resistência de ponta.

O cálculo da capacidade geotécnica total das estacas foi realizada considerando o limite de 125% da capacidade de carga lateral. Três métodos foram utilizados: Aoki-Velloso (1975), Décourt-Quaresma (1978) e Teixeira (1996). O resultado considerado foi a média aritmética dos três processos.

Na ausência de informação precisa a respeito da qualidade da rocha no subsolo investigado, foram considerados os valores de resistência à penetração conforme ensaio SPT até oito metros de profundidade, onde apareceu o impenetrável à percussão, e a partir daí, foi arbitrado o valor de 50% do número de golpes da última camada investigada, correspondendo a 25 golpes para os últimos dois metros de estaca.

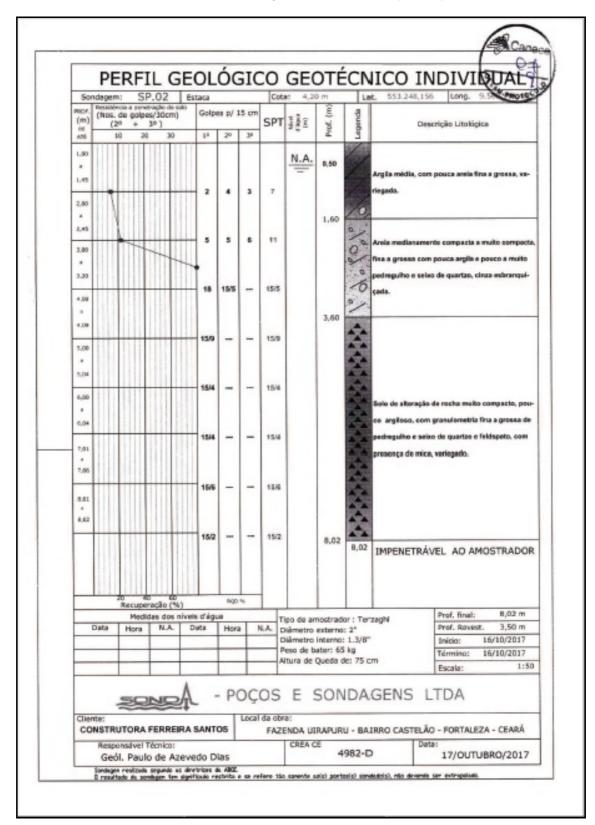
Os resultados para cada perfil foram:

Capacidade de carga admissível à compressão, estaca-raiz DN 31 cm, L=1000 cm								
Apoio / Método	Aoki-Velloso	Décourt- Quaresma	Teixeira	Média				
Lado oeste (SP-02)	87,7 tf	41,4 tf	74,0 tf	67,7 tf				
Lado leste (SP-01)	69,1 tf	37,4 tf	49,2 tf	51,9 tf				



Os valores admissíveis foram calculados com fator de segurança de 2,0.

Comparando às normais máximas e mínimas aplicadas resultantes da análise da ponte, geometria empregada, que são diâmetro de 31 cm, comprimento de 10 metros e as inclinações constantes no projeto estão adequadas sob o ponto de vista geotécnico.



Boletim de sondagem do lado leste (SP-01)

Boletim de sondagem do lado oeste (SP-02)

8 DIMENSIONAMENTO ESTRUTURAL

Flexão do tabuleiro - direção X

-lamanta, tabulair	- nanta C	FII diracca				
Elemento: tabuleiro	o ponte C	EU - direção x				
Características dos		/	5 1 (2 - 2)		(2.222.22)	
fck (MPa) =	40	(4,00E+07)	fcd (MPa) =	28,6	(2,86E+07)	
fyk (MPa) =	500	(5,00E+08)	fyd (MPa) =	434,8	(4,35E+08)	
Geometria da seção)					
bw (cm) =	100	(1,00E+00)	a (cm) =	5	(5,00E-02)	
h (cm) =	15	(1,50E-01)	a' (cm) =	5	(5,00E-02)	
			$A_c (cm^2) =$	1500	(1,50E-01)	
Esforço solicitante						
M_k (tfm) =	2,90	(2,90E+04)	M_d (tfm) =	4,06	(4,06E+04)	
ELU - flexão simple	s					
M_d (tfm/m) =	4,06	(4,06E+04)	A = 7771428,6			
b (cm) =	100	(1,00E+00)	B = -1942857			
d (cm) =	10	(1,00E-01)	C = 40600			
,		())	$\Delta^{0,5} = 1585122,7$			
x (m) =	0,02					
Kx =	0,2302	Cap. o	de rotação OK	14.6.4.3 N	IBR 6118:2014]	
$A_{s,nec}$ (cm ²) =	10,28					
z (m) =	0,09					
Φ_i (mm)	6,3	8	10 12,5	16	20	25
A _{s,unit.} (cm ²)	0,31	0,50	0,79 1,23	2,01	3,14	4,91
s (cm)	3,0	4,8	7,6 11,9	19,5	30,5	47,7
Armad. adotada:	12,5	c/	11	,	ŕ	•
$A_{s,adot}$ (cm ²) =	11,16	(1,12E-03)	$A_{s,adot}$ (cm ²) =	11,16	(1,12E-03)	
ELS - W						
M _k (tfm x m) =	2,90	(2,90E+04)	A = 7771428,6	x _{II} (m)	= 0,02	
b (cm) =	100	(1,00E+00)	B = -1942857		= 0,1594	
d (cm) =	10	(1,00E-01)	C = 29000	z _{II} (m)	= 0,09	
			$\Delta^{0,5} = 1695054$			
E _{cs} (GPa) =	30,10	(3,01E+10)		$\alpha_{\scriptscriptstyle F}$	= 6,98	
	210,00	(2,10E+11)			5,50	
E, (GPa) =	-,	,				
E_s (GPa) =		(1,10E-01)	I_{C} (cm ⁴) =	28.125	(2,81E-04)	
E_s (GPa) = ah (mm) =	110			6.536	(6,54E-05)	
	110 134	(1,34E-01)	I_{II} (cm ⁴) =			
ah (mm) = av (mm) =	134			2 51	(3 51E±06)	
ah (mm) = av (mm) = $\sigma_{\rm si}$ (MPa) =	134 260,15	(2,60E+08)	f _{ctm} (MPa) =	3,51 12100	(3,51E+06)	
ah (mm) = av (mm) = σ_{si} (MPa) = Φ_{i} (mm) =	134 260,15 12,5	(2,60E+08) (1,25E-02)	f_{ctm} (MPa) = Acr (mm ²) =	12100	(1,21E-02)	
ah (mm) = $av (mm) =$ $\sigma_{si} (MPa) =$ $\Phi_{i} (mm) =$ $\eta_{1} =$	134 260,15 12,5 2,25	(2,60E+08) (1,25E-02) (2,25E+00)	$f_{ctm} (MPa) =$ $Acr (mm^2) =$ $A_s (mm^2) =$	12100 122,72	(1,21E-02) (1,23E-04)	
ah (mm) = av (mm) = σ_{si} (MPa) = Φ_{i} (mm) =	134 260,15 12,5	(2,60E+08) (1,25E-02)	f_{ctm} (MPa) = Acr (mm ²) =	12100	(1,21E-02)	
ah (mm) = $av (mm) =$ $\sigma_{si} (MPa) =$ $\Phi_{i} (mm) =$ $\eta_{1} =$	134 260,15 12,5 2,25	(2,60E+08) (1,25E-02) (2,25E+00)	$f_{ctm} (MPa) =$ $Acr (mm^2) =$ $A_s (mm^2) =$	12100 122,72	(1,21E-02) (1,23E-04)	

Cortante do tabuleiro - direção X

	nonte C	EU - direção x			
	, poe o.	zo uneque x			
Características dos i	materiais				
fck (MPa) =	40	(4,00E+07)	fcd (MPa) =	28,6	(2,86E+07)
fyk (MPa) =	500	(5,00E+08)	fyd (MPa) =	434,8	(4,35E+08)
Geometria da seção)				
bw (cm) =	100	(1,00E+00)	a (cm) =	5,6	(5,60E-02)
h (cm) =	15	(1,50E-01)	a' (cm) =	5,6	(5,60E-02)
			$A_c (cm^2) =$	1500	(1,50E-01)
Esforço solicitante $V_k(tf) =$	6,0	(6,00E+04)	V _d (tf) =	8,4	(8,40E+04)
ELU - cortante					
d (cm) =	9,4	(9,40E-02)			
u (ciii) =	11,16	(1,12E-03)			
` '					
$A_{s 1} (cm^2) = f_{ctd} (MPa) =$	1,75	(1,75E+06)			
$A_{s1}(cm^2) =$	1,75 0,44	(1,75E+06) (4,39E+05)			
$A_{s 1} (cm^2) = f_{ctd} (MPa) =$,	, ,			
A_{s1} (cm ²) = f_{ctd} (MPa) = T_{Rd} (MPa) =	0,44	(4,39E+05)			
A_{s1} (cm ²) = f_{ctd} (MPa) = τ_{Rd} (MPa) = t_{Rd}	0,44 1,51	(4,39E+05) (1,51E+00)			

ELS - retração				
bw (cm) =	100	(1,00E+00)		
h (cm) =	15	(1,50E-01)		
x _{II} (m) =	0,02	(1,59E-02)		
k =	0,80	(8,00E-01)		
k _c =	0,40	(4,00E-01)		
$f_{ct,ef}$ (MPa) =	3,51	(3,51E+06)		
A_{ct} (cm ²) =	1340,6	(1,34E-01)		
್ s (MPa) = *	256	(2,56E+08)		
$A_{s.nec}$ (cm ²) =	5,88	(5,88E-04)	ELS - RETRAÇÃO OK	

2/2

Flexão do tabuleiro - direção Y

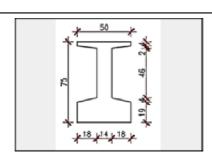
lemento: tabuleir	o ponte C	EU - direção Y				
Características dos	materiais					
fck (MPa) =	40	(4,00E+07)	fcd (MPa) =	28,6	(2,86E+07)	
fyk (MPa) =	500	(5,00E+08)	fyd (MPa) =	434,8	(4,35E+08)	
Geometria da seção)					
bw (cm) =	100	(1,00E+00)	a (cm) =	8	(8,00E-02)	
h (cm) =	15	(1,50E-01)	a' (cm) =	5	(5,00E-02)	
			$A_c (cm^2) =$	1500	(1,50E-01)	
sforço solicitante						
M_k (tfm) =	1,40	(1,40E+04)	M_d (tfm) =	1,96	(1,96E+04)	
:LU - flexão simple	ς.					
M_d (tfm/m) =	1,96	(1,96E+04)	A = 7771428,6			
b (cm) =	100	(1,00E+00)	B = -1360000			
d (cm) =	7	(7,00E-02)	C = 19600			
2 (3)		(1,755= 5=)	$\Delta^{0,5} = 1113696,5$			
x (m) =	0,02		/-			
Kx =	0,2264	Cap. o	de rotação OK	14.6.4.3 N	BR 6118:2014]	
$A_{s,nec}$ (cm ²) =	7,08	•			•	
z (m) =	0,06					
Φ_i (mm)	6,3	8	10 12,5	16	20	25
$A_{s,unit.}$ (cm ²)	0,31	0,50	0,79 1,23	2,01	3,14	4,91
s (cm)	4,4	7,0	11,0 17,3	28,3	44,3	69,3
Armad. adotada:	10	c/	10			
$A_{s.adot.}$ (cm ²) =	7,85	(7,85E-04)	$A_{s.adot.}$ (cm ²) =	7,85	(7,85E-04)	
LS - W						
M_k (tfm x m) =	1,40	(1,40E+04)	A = 7771428,6	x _{II} (m)	= 0,01	
b (cm) =	100	(1,00E+00)	B = -1360000	KxII	= 0,1569	
d (cm) =	7	(7,00E-02)	C = 14000	z _{II} (m)	= 0,07	
			$\Delta^{0,5} = 1189285,5$			
E _{cs} (GPa) =	30,10	(3,01E+10)		$\alpha_{\scriptscriptstyle E}$	= 6,98	
E_s (GPa) =	210,00	(2,10E+11)		_		
ah (mm) =	100	(1,00E-01)	I_{C} (cm ⁴) =	28.125	(2,81E-04)	
av (mm) =	139	(1,39E-01)	I_{II} (cm ⁴) =	2.786	(2,79E-05)	
~- (<i>)</i> =		(2,002 02)	iji (ciri) –		(=,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
σ_{si} (MPa) =	206,85	(2,07E+08)	f_{ctm} (MPa) =	3,51	(3,51E+06)	
	10	(1,00E-02)	Acr (mm2) =	10000	(1,00E-02)	
Φ_i (mm) =	2,25	(2,25E+00)	$A_s (mm^2) =$	78,54	(7,85E-05)	
η 1 =	240	(2,10E+11)	<i>⊳</i> _{ri} =	0,79%	(7,85E-03)	
	210	(, - ,				
η 1 =	0,06	(6,19E-05)				

Cortante do tabuleiro - direção Y

Características dos r	nateriais				
fck (MPa) =	40	(4,00E+07)	fcd (MPa) =	28,6	(2,86E+07)
fyk (MPa) =	500	(5,00E+08)	fyd (MPa) =	434,8	(4,35E+08)
, , ,		,	, , ,		, , ,
ieometria da seção					
bw (cm) =	100	(1,00E+00)	a (cm) =	5,6	(5,60E-02)
h (cm) =	15	(1,50E-01)	a' (cm) =	5,6 1500	(5,60E-02)
			$A_c (cm^2) =$	1500	(1,50E-01)
sforço solicitante					
V _k (tf) =	1,8	(1,80E+04)	V _d (tf) =	2,5	(2,52E+04)
LU - cortante	0.4	(0.405.03)			
d (cm) =	9,4	(9,40E-02)			
$A_{s,1}(cm^2) =$	7,85	(7,85E-04)			
f_{ctd} (MPa) = T_{Rd} (MPa) =	1,75 0,44	(1,75E+06) (4,39E+05)			
		(4,59E+05) (1,51E+00)			
k =	1,51	(8,36E-03)			
$\rho_1 = \sigma_{cp} (MPa) =$	0,008	(0,00E+00)			
$V_{Rd1}(tf) =$	9,5	(9,53E+04)	ELU - CORT. OK SEM	ΔΡΙΛ	
V Rd1 (CI) —	3,3	(3,332104)	LEG CONT. ON SEIVE	· · · · · · · · · · · · · · · · · · ·	
LS - retração					
bw (cm) =	100	(1,00E+00)			
h (cm) =	15	(1,50E-01)			
$x_{II}(m) =$	0,01	(1,10E-02)			
k =	0,80	(8,00E-01)			
k _c =	0,40	(4,00E-01)			
$f_{ct,ef}$ (MPa) =	3,51	(3,51E+06)			
$A_{ct} (cm^2) = $	1390,2	(1,39E-01)			
$\sigma_{\rm s}$ (MPa) =	288	(2,88E+08)			_
$A_{s,nec}$ (cm ²) =	5,42	(5,42E-04)	ELS - RETRAÇÃO ()K	

Características da protensão

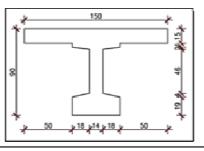
DIMENSIONAMENTO DE SEÇÕES DE CONCRETO PRÉ-TRACIONADO - pág. 1/2 Características dos materiais e da seção


Elemento: VPM, ponte do CEU

Características dos materiais

fc	k (MPa) =	40	(4,00E+07)	fcd (MPa) =	28,6	(2,86E+07)	
fcj,2	1 (MPa) =	40	(4,00E+07)	Agregado =	granito	ou gnaisse	
fctm,2	1 (MPa) =	3,51	(3,51E+06)	Ep (GPa) =	195	(1,95E+11)	
	E _{ci} (GPa) =	35,42	(3,54E+10)	fpyk (MPa) =	1863	(1,86E+09)	
, E	_{cs} (GPa) =	31,88	(3,19E+10)	fpyd (MPa) =	1620	(1,62E+09)	

Geometria da seção


GCOIIIC GIG GG	Jeção	
Seção isolada		
bw (cm) =	14	(1,40E-01)
h (cm) =	75	(7,50E-01)
bf (cm) =	110	(1,10E+00)
hf (cm) =	4	(4,00E-02)
A_{C} (cm ²) =	1.984,75	(1,98E-01)
$I_x (cm^4) =$	1.537.426	(1,54E-02)
$y_i = y_{cg} (cm) =$	30,41	(3,04E-01)
y _s (cm) =	44,59	(4,46E-01)

Seção solidarizada

bw (cm) =	14	(1,40E-01)
h (cm) =	90	(9,00E-01)
bf (cm) =	150	(1,50E+00)
hf (cm) =	15	(1,50E-01)

A_{C} (cm ²) =	4.234,00	(4,23E-01)
$I_x (cm^4) =$	4.094.320	(4,09E-02)
$y_i = y_{cg} (cm) =$	58,09	(5,81E-01)
v (cm) -	21 01	(2 10E 01)

Agressividade ambiental e nível de protensão adotado

CAA III - Ponte sobre vertedouro com fluxo const. de esgoto não tratado - <u>adotar protensão completa</u>
>> Verificar <u>ELS-D em combinação frequente de serviço</u> (tabela 13.4 NBR 6118:2014)
>> Verificar <u>ELS-F em combinação rara de serviço</u> (tabela 13.4 NBR 6118:2014)

Esforços e coeficientes gerais de ponderação

		,	.yu.o			
M_{g0} (tfm) =	32,81	(3,28E+05)	$M_{q,máx}$ (tfm) =	86,00	(8,60E+05)	·
M_{g1} (tfm) =	63,52	(6,35E+05)	$M_{q,min}$ (tfm) =	0,00	(0,00E+00)	
M_{g2} (tfm) =	0,00	(0,00E+00)	M_p (tfm) =	62,86	(6,29E+05)	
$\gamma_{ m fg}$ =	1,35	(1,35E+00)	γ_{fq} =	1,50	(1,50E+00)	
ψ_1 =	0,40	(4,00E-01)	ψ_2 =	0,30	(3,00E-01)	
CIV =	1,297	(1,30E+00)				
γ _{p, favorável} =	0,90	(9,00E-01)				
γ _{p, desfavorável} =	1,20	(1,20E+00)				

1/2

Protensão da longarina - estados limites de serviço

DIMENSIONAMENTO DE SEÇÕES DE CONCRETO PRÉ-TRACIONADO - pág. 2/2 Características da protensão, ELS-CE, ELS-D e ELS-F

Elemento: VPM, ponte do CEU

Incidência dos esforços e combinações

M _d	Combinação	Valor (tfm)	Situação	Seção
M _{d1}	$1.3 \times \gamma_{fg} \times M_{g0} - \gamma_{p, desf} \times M_{p}$	1,01	Içamento	Isolada
M _{d2}	$\gamma_{fg} \times (M_{g0} + M_{g1})$	130,05	Lançamento da capa	Isolada
M _{d3}	$\gamma_{fg} \times (M_{g0} + M_{g1} + M_{g2}) + CIV \times \gamma_{fq} \times M_{q,min}$	130,05	Uso (mínimo)	Solidariz.
M _{d4}	$\gamma_{fg} \times (M_{g0} + M_{g1} + M_{g2}) + CIV \times \gamma_{fq} \times M_{q,máx}$	297,36	Uso (máximo)	Solidariz.

Características da protensão

n =	22	(2,20E+01)	f _{ptk} (MPa) =	1.876	(1,88E+09)	
$A_{p, un} (cm^2) =$	1,00	(1,00E-04)	f_{pyk} (MPa) =	1.686	(1,69E+09)	
$N_{p,t=0}$ (tf) =	14,0	(1,40E+05)	$0.77 x f_{ptk} (MPa) =$	1.445	(1,44E+09)	
$N_{p,t=\infty}$ (tf) =	11,2	(1,12E+05)	$0.85 \times f_{pyk} (MPa) =$	1.433	(1,43E+09)	
A_{C} (cm ²) =	1.984,75	(1,98E-01)	e (cm) =	10,0	(1,00E-01)	

ELS-CE, ato da protensão, ponderadores conforme 17.2.4.3.2.a (NBR 6118:2014)

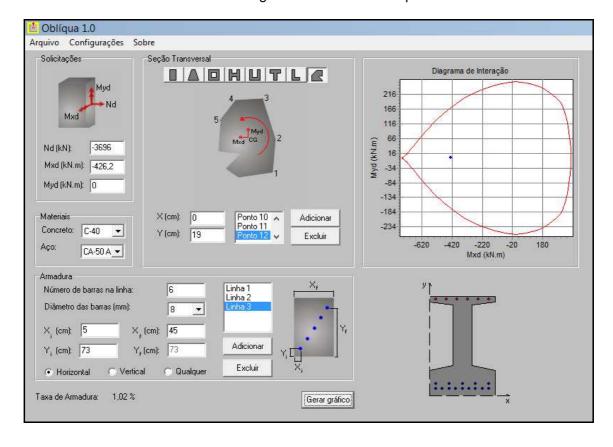
	p. 0 to	po	COMOTHIC 17.2.4.3.2.0 (NDI		• - /	
Seção isolada						
A_{C} (cm ²) =	1.984,75	(1,98E-01)	$\gamma_{ m fg}$ =	1,00	(1,00E+00)	
$I_x (cm^4) =$	1.537.426	(1,54E-02)	γ_{p} =	1,10	(1,10E+00)	
$y_i = y_{cg} (cm) =$		(3,04E-01)	$\sigma_{i,t=0}$ (MPa) =	24,26	(2,43E+07)	
$W_{i, isol.}$ (cm ³) =	50.557	(5,06E-02)	$\sigma_{i, lim, t=0}$ (MPa) =	28,00	(2,80E+07)	
				ELS-CE	(ato) OK	

ELS-D, ato da protensão, ponderadores conforme 17.2.4.3.2.a (NBR 6118:2014)

ELS D, ato aa j	,, otc.,,	, on a craatics	COMOTHIC 17.2.4.3.2.a (NDI	0110.201	•,	
Seção isolada						
A_{C} (cm ²) =	1.984,75	(1,98E-01)	$\gamma_{ m fg}$ =	1,00	(1,00E+00)	
$I_x (cm^4) =$	1.537.426	(1,54E-02)	γ_{p} =	1,10	(1,10E+00)	
y _s (cm) =	44,59	(4,46E-01)	$\sigma_{s,t=0}$ (MPa) =	6,53	(6,53E+06)	
$W_{s, isol.}$ (cm ³) =	34.479	(3,45E-02)	$\sigma_{s, lim, t=0}$ (MPa) =	-4,21	-(4,21E+06)	
				ELS-D	(ato) OK	

ELS-D, uso da ponte, combinação frequente de serviço

5	Seção solidaria	zada					
	$A_c (cm^2) =$	4.234,00	(4,23E-01)	γ_{fg} =	1,00	(1,00E+00)	
	$I_x (cm^4) =$	4.094.320	(4,09E-02)	γ_{fq} =	1,00	(1,00E+00)	
- 1	$y_i = y_{cg} (cm) =$	58,09	(5,81E-01)	γ_p =	1,00	(1,00E+00)	
W	$l_{i, solid.}$ (cm ³) =	70.482	(7,05E-02)	$\psi_{\scriptscriptstyle 1}$ =	0,50	(5,00E-01)	
				$\sigma_{i,t=\infty}$ (MPa) =	2,59	(2,59E+06)	
				$\sigma_{i, lim, t=\infty}$ (MPa) =	0,00	(0,00E+00)	
					ELS-D	(uso) OK	


ELS-F, uso da ponte, combinação rara de serviço

Seção solidarizad	a					
$A_{C}(cm^{2}) = 4.$	234,00	(4,23E-01)	$\gamma_{ m fg}$ =	1,00	(1,00E+00)	
$I_x(cm^4) = 4.0$	094.320	(4,09E-02)	γ_{fq} =	1,00	(1,00E+00)	
$y_i = y_{cg} (cm) = $		(5,81E-01)	$\gamma_{ extsf{p}}$ =	1,00	(1,00E+00)	
$N_{i, \text{ solid.}} \text{ (cm}^3\text{)} = 7$	70.482	(7,05E-02)	ψ =	1,00	(1,00E+00)	
			$\sigma_{i,t=\infty}$ (MPa) =	-3,51	-(3,51E+06)	
			$\sigma_{i, lim, t=\infty}$ (MPa) =	-3,51	-(3,51E+06)	
				ELS-F	(uso) OK	

19

Protensão da longarina - ELU-flexocompressão

Especificações Técnicas

9 ESPECIFICAÇÕES TÉCNICAS

9.1 Concreto C40

- O concreto deverá ser dosado de acordo com as recomendações de profissional tecnologista, certificado, preferencialmente, pelo Instituto Brasileiro do Concreto de acordo com a NBR 15.146 partes 1 a 5, obedecendo à NBR 12.655:2015.
 Lançamento e adensamento deverão atender aos requisitos da NBR 14.931:2004.
- A altura de lançamento deverá ser de, no máximo, 2,00 metros, conforme NBR 14931:2004.
- Quando o lançamento do concreto for interrompido e, assim, formar-se uma junta de concretagem, deverão ser tomadas as precauções necessárias para garantir a ligação satisfatória do concreto já endurecido com o novo trecho. Deverá ser removida a nata de cimento até que o agregado graúdo fique exposto restante na superfície existente antes da saturação e do reinício da concretagem.
- O concreto moldado no local deverá ser protegido do sol e de outros agentes agressivos durante o período de cura (considera-se os sete primeiros dias após o lançamento). Recomenda-se o uso de mantas de tecido específicas para esse fim, que deverão ser umedecidas periodicamente durante a cura.
- O funcionamento da estrutura em serviço pressupõe homogeneidade da massa.
 Dessa maneira, devem ser adotados procedimentos da boa técnica que evitem desagregações e formação de vazios durante a concretagem, conforme indica a NBR 14931:2004.
- O adensamento do concreto deve ser feito sem que haja contato da agulha com as formas, nem com as armaduras, a fim de evitar a formação de bolhas de ar.

9.2 Formas

- As formas deverão ser limpas, removendo concreto velho, gesso, graxa, ou outra sujeira, bem como pregos e parafusos.
- As formas deverão apresentar superfície lisa e plana, perfeita estanqueidade, rigidez,
 e resistência necessária para resistir aos esforços oriundos da concretagem sem

apresentar deformações, vazamentos de nata ou outro efeito que venha a provocar defeitos no concreto.

- Deverá ser aplicado, sobre toda a superfície de contato com o concreto, produto desmoldante adequado para permitir a desforma sem provocar danos ao concreto.
- A desforma só deverá ocorrer quando a estrutura tiver resistência necessária para absorver aos esforços oriundos da retirada das formas, conforme estabelece o item 14.2 da NBR 6118.

9.3 Armaduras passivas e ativas

- As armaduras passivas serão constituídas de barras e fios de aço CA-50 e de aço CA-60 de acordo com a NBR 7480:2007.
- As armaduras ativas serão constituídas de cordoalhas de 7 fios de aço CP-190 RB, atendendo aos requisitos da NBR 7483:2005.
- As armaduras deverão ser cortadas e dobradas conforme as indicações de projeto, com cobrimentos rigorosamente garantidos através de espaçadores feitos preferencialmente de plástico.
- As barras e fios de aço deverão ser convenientemente limpas de qualquer substância prejudicial à sua aderência, retirando-se as escamas eventualmente destacadas pela oxidação.
- O dobramento das barras deverá ser feito respeitando-se os raios mínimos indicados nos desenhos.
- As emendas de barras da armadura deverão ser feitas de acordo com o previsto no projeto; as não previstas deverão atender ao item 6.3.5. da NBR 6118.

9.4 Estacas

- As estacas-raízes deverão ser executadas seguindo as exigências da NBR 6122:2019, com foco especial ao que consta no anexo K (normativo).
- O consumo de cimento no mínimo deve ser de 600 kg/m³.

- A pressão de injeção da calda de cimento deverá ficar entre 2,0 e 3,0 MPa (300 a 420 psi), a critério do executor das estacas visando à obtenção das características definidas no projeto, em especial o diâmetro e a integridade do fuste.
- É fundamental que o relatório de execução das estacas cumpra os requisitos da seção K.11 da NBR 6122:2019 e que seja anexado ao relatório diário de obras. Só assim pode servir de referência para futuras manutenções na estrutura, imprescindíveis ao bom funcionamento da obra.

9.5 Mata-juntas entre o tabuleiro e a viga-travessa

- O perfil elastomérico utilizado deverá ser fabricado em etileno-propileno-dienomonômero (EPDM) ou borracha nitrílica, com ou sem adições de policloropreno (neoprene).
- A dureza Shore A mínima deve ser de 55.
- A resistência à tração deverá ser de, no mínimo, 10 MPa. O alongamento mínimo na ruptura deverá ser de 350%.
- A resistência ao rasgo deverá ser de no mínimo 2,6 tf/m.

9.6 Mata-juntas entre a viga-travessa e a laje de transição

- Após a limpeza e remoção de impurezas no espaço da junta, deverá ser inserido limitador de profundidade feito de material macio, como poliuretano expandido, poliestireno expandido ou polietileno de célula fechada, usualmente escolhidos no diâmetro comercial imediatamente superior ao tamanho efetivo da junta (adotar, por exemplo, limitador de profundidade de 25 mm de diâmetro para comprimi-lo na junta de 20 mm prevista no projeto).
- O selante adotado, poliuretano flexível, deverá ser certificado para resistir à tração mínima de 0,40 MPa (4,0 kgf/cm²), testado conforme a EN 8340:2005. A dureza Shore A deverá ser no mínimo 22.

9.7 Aparelhos de apoio de elastômero fretado

- Os aparelhos de apoio deverão ser constituídos de policloropreno (neoprene) de acordo com a NBR 19.783:2015. A dureza Shore A deve ser de 60 pontos.
- O aço especificado é o CF-21, próprio para chapas finas, de acordo com a NBR 6650:2014.
- Os aparelhos devem apresentar, gravados em alto relevo, a data de fabricação dentre outras informações técnicas relevantes de acordo com a NBR 19.783.

9.8 Graute de base epóxi

- Os aparelhos de apoio deverão ser fixados sobre as vigas travessas em camada de 2,0 cm de espessura de graute de base epóxi não-retrátil com resistência mínima à compressão de 40 MPa após um dia e de 70 MPa após 28 dias.
- Recomenda-se o uso de graute formado de resina e poliamida como endurecedor.

9.9 Graute de base cimento

 As pré-lajes deverão ser assentadas sobre uma camada de 2,0 mm de espessura de graute de base cimento não-retrátil com resistência mínima à compressão de 25 MPa após um dia e de 45 MPa após 28 dias.

ART

10 ART

Anotação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977

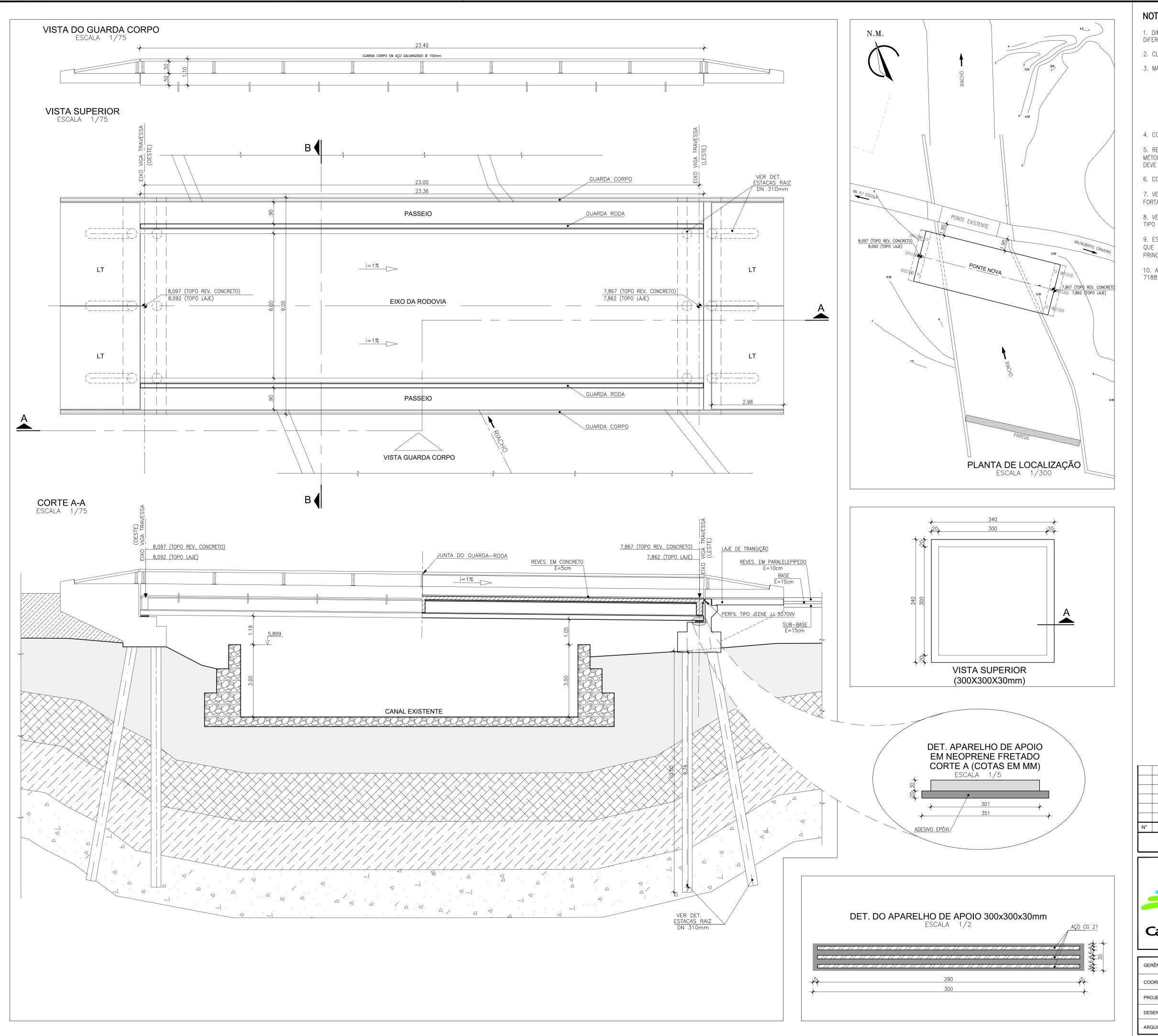
ART OBRA / SERVIÇO Nº CE20200595694

Conselho Regional de Engenharia e Agronomia do Ceará

INICIAL

1. Responsável Técnico				
VICTOR GURGEL REIS				
Titulo profissional: ENGENHEIRO CIV	nL .		RNP: 0612691276	
			Registro: 52428D CE	
2. Dados do Contrato				
Contratante: CAGECE - Companhia de	Agua e Esgoto do Ceará		CPF/CNPJ: 07.040.108	8/0001-57
AVENIDA LAURO VIEIRA CHAVES			Nº: 1030	
Complemento:		Bairro: AEROPORTO		
Cidade: FORTALEZA		UF: CE	CEP: 60422700	
Contrato: Não especificado	Celebrado em:			
Valor: R\$ 7.200,00	Tipo de contratante: PESSOA JU	URÍDICA DE DIREITO PÚBL	.100	
Ação Institucional: NENHUMA - NÃO C	PTANTE			
3. Dados da Obra/Serviço				 -
AVENIDA LAURO VIEIRA CHAVES			Nº: 1030	
Complemento:		Bairro: AEROPORTO		
Cidade: FORTALEZA		UF; CE	CEP: 60422700	
Data de Início: 20/01/2020	Previsão de término: 07/02/2020	Coordenadas Ge	eográficas: 0, 0	
Finalidade: Infraestrutura		Código: Não especificado		
Proprietário: CAGECE - Companhia de	Agua e Esgoto do Ceará		CPF/CNPJ: 07.040.108	3/0001-57
4. Atividade Técnica				
15 - Elaboração			Quantidade	Unidad
80 - Projeto > TOS CONFEA -> ESTI	RUTURAS -> OBRAS DE ARTE -> #TO	S_2.6.1 - DE PONTES	1,00	ŧ
80 - Projeto > TOS CONFEA -> 9 #TOS 2.8.1 - DE ESTRUTURA DE C	ESTRUTURAS -> PRÉ-MOLDADOS E ONCRETO PRÉ-FABRICADO	E PRÉ-FABRICADOS ->	1,00	1
80 - Proleto > TOS CONFEA -> EST	RUTURAS -> FUNDAÇÕES -> DE FUI	NDAÇÕES PROFUNDAS	1,00	t
-> #TOS_2.9.2.3 - EM ESTACAS DE	CONCRETO MOLDADAS IN LOCO			
Anda a ann	clusão das atividades técnicas o profiss	rional deverá noceder a haix	a desta ART	
		sional devela proceder a baix		
5. Observações		5 11 - 05 12- 1- 22	O	concreto
Projeto estrutural básico de ponte classe moldado no local, longarinas pré-fabricado	30 no Condominio Espiritual Oirapuru e las com protensão aderente e fundaçõe	em Fonaleza, CE. Vao de 25. es em estacas-raízes.	o medas, com labulano em	CONGRETO
6. Declarações				
- Declaro que estou cumprindo as regras 5296/2004.	de acessibilidade previstas nas normas	s técnicas da ABNT, na legist	ação específica e no decret	o n.
7. Entidade de Classe				
NENHUMA - NÃO OPTANTE		NI + C	m.	
8. Assinaturas		Victor Ga	all Keis	
Dectaro serem verdadeiras as informaçõe	es acima	VICTOR GURG	EL REIS - CPF: 027.780.973-84	
0.4	NEIBO de 2020	Eng. Raul	Type de Arreda Leitao	
Local	data	CAGECE - Gereate to	Projetos de Pageratarchara - 5910.10010091-67	CNPJ:
9. Informações				
* A ART é válida somente quando quitad	a, mediante apresentação do comprova	inte do pagamento ou confer	ência no site do Crea.	
* Somente é considerada válida a ART q	uando estiver cadastrada no CREA, qui	itada, possuir as assinaturas	originais do profissional e c	ontratante.
10. Valor				
Valor da ART: R\$ 88,78 Registra	da em: 21/01/2020 Valor pag	jo: R\$ 88,78 Nosso N	úmero: 8213801449	

A autenticidade desta ART pode ser verificada em: https://crea-ce.sitac.com.br/publico/, com a chave: 6d38z tmpresso em: 21/01/2020 às 15:17:24 por: , tp: 189.84.115,124


Peças Gráficas

11 PEÇAS GRÁFICAS

Relação de Plantas:

DESENHO:	PRANCHA:	TÍTULO:
01/03	01/07	Condomínio Espiritual Uirapuru – CEU – Ponte na Alameda Santíssima Trindade II – Formas 1/3 – Vista Superior, Corte Longitudinal e Detalhes
02/03	02/07	Condomínio Espiritual Uirapuru – CEU – Ponte na Alameda Santíssima Trindade II – Formas 2/3 – Seção, Loc. Apoios, Vigas e Detalhes
03/03	03/07	Condomínio Espiritual Uirapuru – CEU – Ponte na Alameda Santíssima Trindade II – Formas 3/3 – Pré-lajes e Vista Inferior
01/04	04/07	Condomínio Espiritual Uirapuru – CEU – Ponte na Alameda Santíssima Trindade II – Armação 1/4 - Viga Pré Fabricada
02/04	05/07	Condomínio Espiritual Uirapuru - CEU - Ponte na Alameda Santíssima Trindade II - Armação 2/4 - Encontros, Pré-Lajes e Guarda-Rodas
03/04	06/07	Condomínio Espiritual Uirapuru – CEU – Ponte na Alameda Santíssima Trindade II – Armação 3/4 - Laje do Tabuleiro
04/04	07/07	Condomínio Espiritual Uirapuru – CEU – Ponte na Alameda Santíssima Trindade II – Armação 4/4 – Transversinas e Guarda- Corpos

1. DIMENSÕES EM CENTÍMETROS, COTAS DE NÍVEL EM METROS, EXCETO ONDE INDICADO DE FORMA

2. CLASSE DE AGRESSIVIDADE AMBIENTAL: III

MATERIAIS:

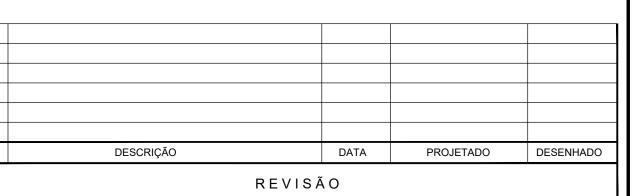
CONCRETO: C40; FCK=40 MPA; ECS=32,1 GPA (AG. GRAÚDO: GRANITO OU GNAISSE); A/C MÁX.=0,45; CONSUMO MÍN. DE CIMENTO=360 KG/M3 CONFORME NBR 12655:2015

AÇOS: CA-50; FYK=500 MPA; ES=210 GPA; CA-60; FYK=600 MPA; ES=210 GPA; CONFORME NBR 7480:2007

4. COBRIMENTOS NOMINAIS: 3,5 CM (SUPERESTRUTURA) / 4,0 CM (INFRAESTRUTURA).

5. REALIZAR CURA POR ASPERSÃO TRÊS VEZES POR DIA DURANTE SETE DIAS APÓS A CONCRETAGEM. MÉTODOS ALTERNATIVOS, COMO CURA A VAPOR, PODEM REDUZIR OS PRAZOS DE CURA. A FISCALIZAÇÃO DEVE SER CONSULTADA EM CASO DE MUDANÇA.

6. CONSULTAR TECNOLOGISTA A FIM DE DEFINIR TRAÇOS E ADITIVOS ADEQUADOS.


7. VER LOCAÇÃO DESTA OBRA NO PROJETO GEOMÉTRICO DA VIA:

FORTALEZA_CEU_SANTÍSSIMA_TRINDADE_00.00_LR_01.01-LAY.DWG, RO, DE JANEIRO DE 2010.

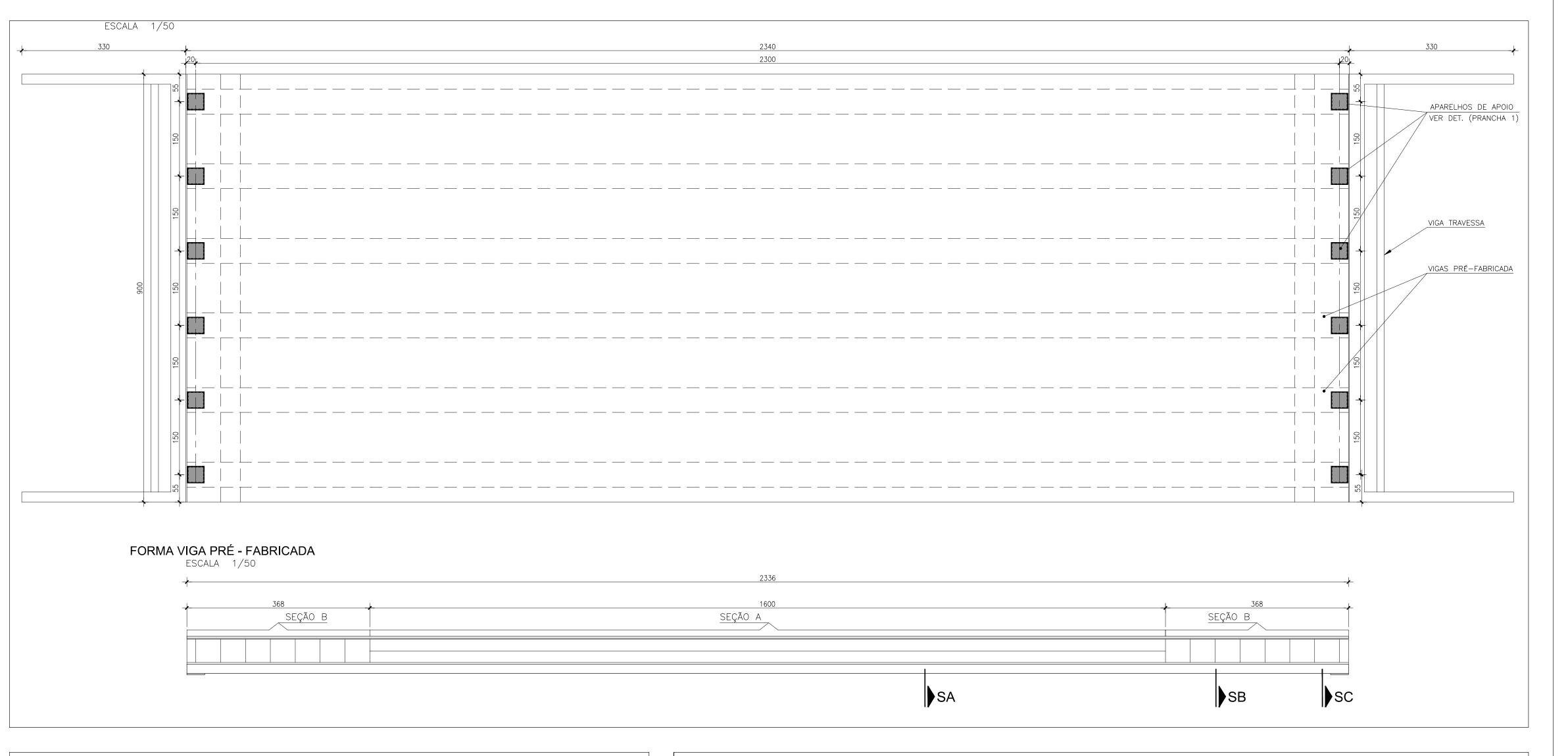
8. VER DETALHES DA PAVIMENTAÇÃO DOS ACESSOS NO PROJETO DE PAVIMENTAÇÃO DA VIA: CEU-SEÇÃO TIPO DE DETALHES.DWG, RO DE DEZEMBRO DE 2009.

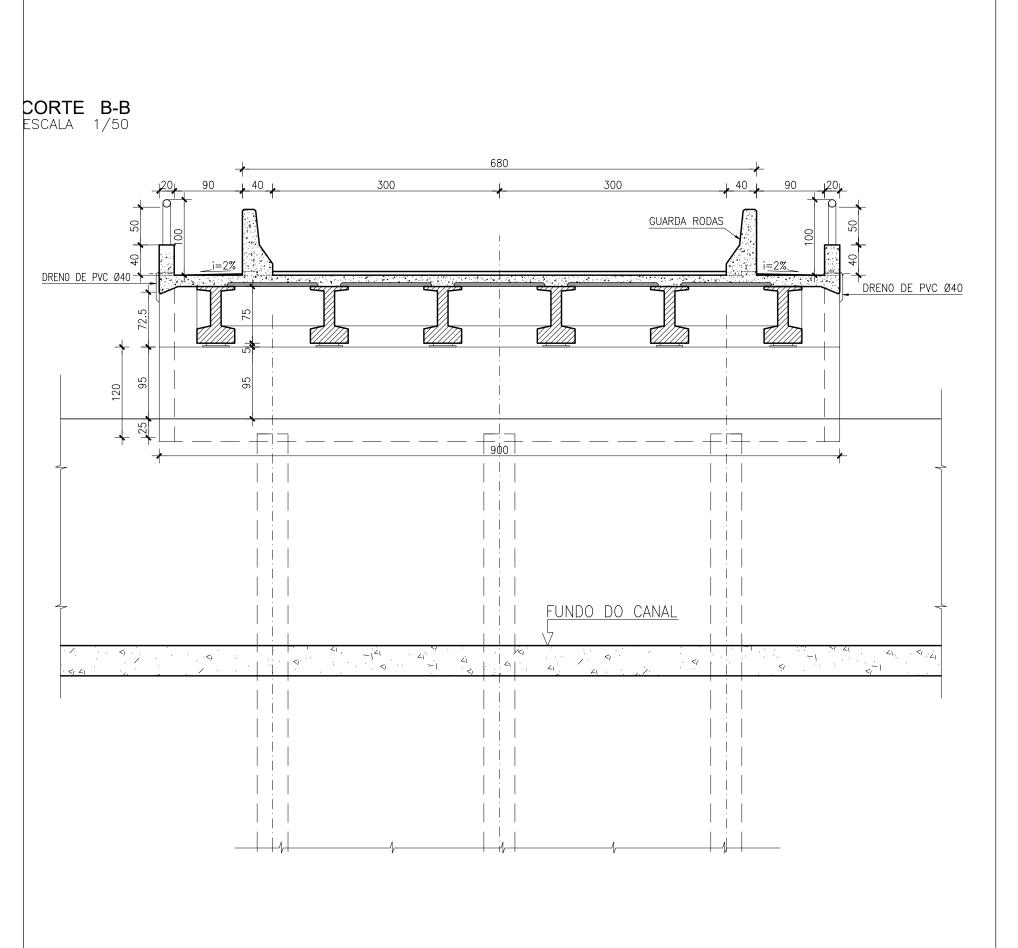
9. ESTE PROJETO FOI ELABORADO ATENDENDO AOS CRITÉRIOS DA ABNT E PARTE DO PRESSUPOSTO QUE A EXECUÇÃO E OS MATERIAIS EMPREGADOS TAMBÉM ATENDERÃO ÀS NORMAS APLICÁVEIS, PRINCIPALMENTE AS EXIGÊNCIAS DA NBR 14.931:2004 E DA NBR 12.655:2015 DENTRE OUTRAS.

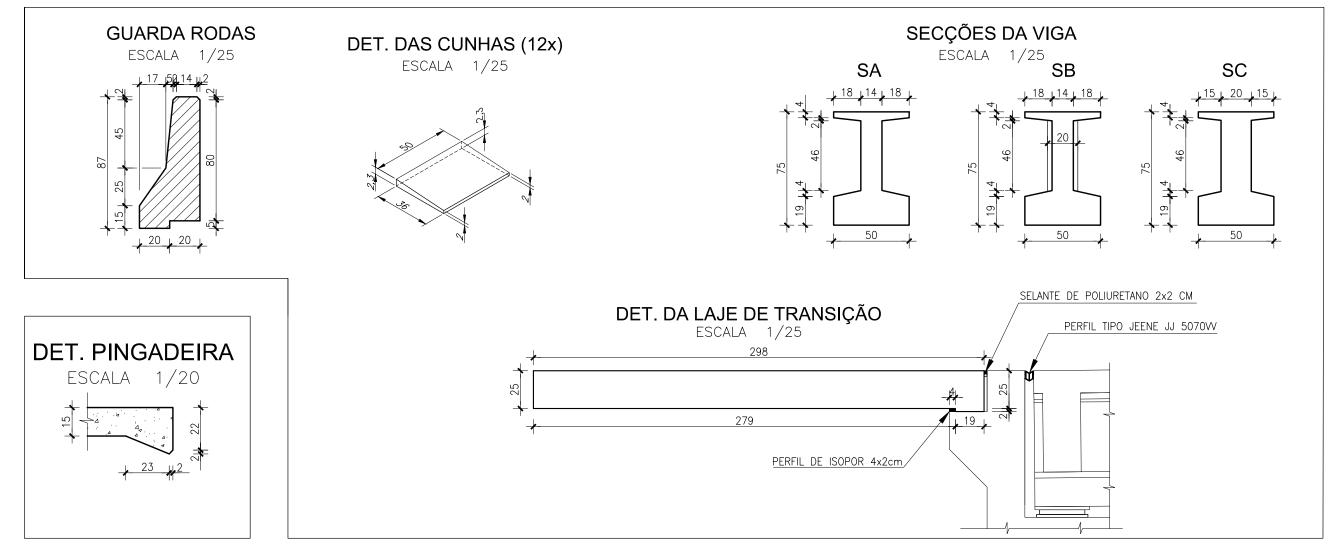
10. A PONTE FOI PROJETADA PARA SUPORTAR AS CARGAS DO VEÍCULO TIPO TB-45 CONFORME NBR 7188:2013.

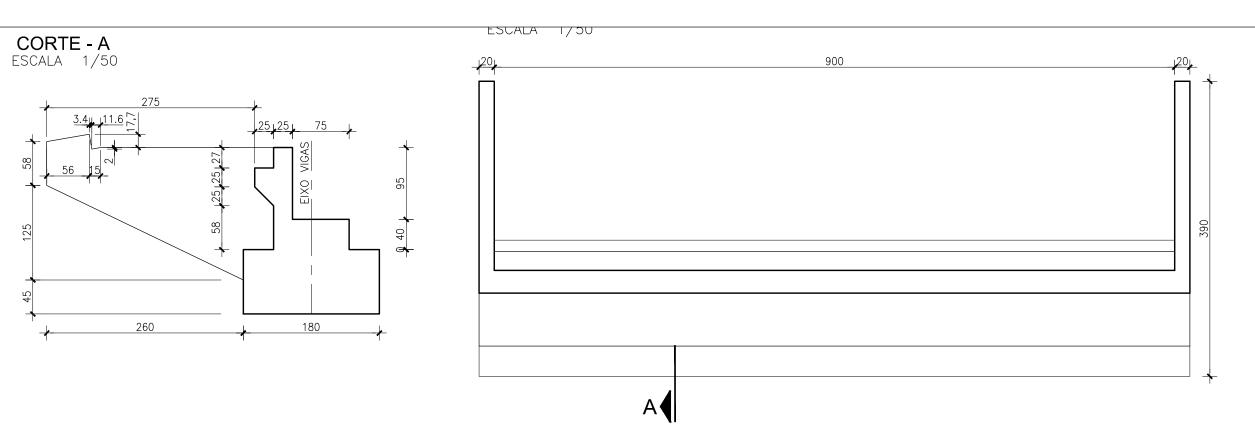
COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA PROJETO BÁSICO


DESENHO PRANCHA Nº


01/07


01/03


CONDOMÍNIO ESPIRITUAL UIRAPURU - CEU PONTE NA ALAMEDA SANTÍSSIMA TRINDADE II FORMAS 1/3 - VISTA SUPERIOR, CORTE LONGIT. E DETS.

GERÊNCIA:	ENG. RAUL TIGRE DE ARRUDA LEITÃO		
COORDENAÇÃO:	ENG. BRUNO CAVALCANTE DE QUEIROZ		
PROJETO:	ENG. VICTOR G. REIS - RNP 061.269.127-6		
DESENHO:	S. BARROSO	ESCALA:	INDIC.
ARQUIVO:	SES Fortaleza - Ponte CEU - R0.dwg	DATA:	DEZ/2019

NOTAS:

1. DIMENSÕES EM CENTÍMETROS, COTAS DE NÍVEL EM METROS, EXCETO ONDE INDICADO DE FORMA DIFERENTE.

2. CLASSE DE AGRESSIVIDADE AMBIENTAL: III

_ ...__

3. MATERIAIS:

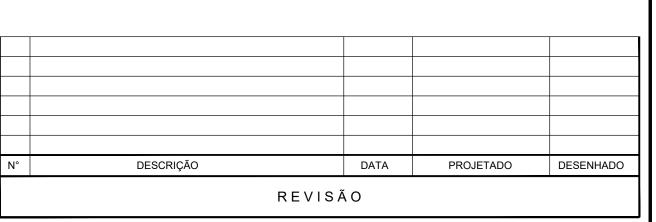
CONCRETO: C40; FCK=40 MPA; ECS=32,1 GPA (AG. GRAÚDO: GRANITO OU GNAISSE); A/C MÁX.=0,45; CONSUMO MÍN. DE CIMENTO=360 KG/M3 CONFORME NBR 12655:2015

AÇOS: CA-50; FYK=500 MPA; ES=210 GPA; CA-60; FYK=600 MPA; ES=210 GPA; CONFORME NBR 7480:2007

4. COBRIMENTOS NOMINAIS: 3,5 CM (SUPERESTRUTURA) / 4,0 CM (INFRAESTRUTURA).

5. REALIZAR CURA POR ASPERSÃO TRÊS VEZES POR DIA DURANTE SETE DIAS APÓS A CONCRETAGEM. MÉTODOS ALTERNATIVOS, COMO CURA A VAPOR, PODEM REDUZIR OS PRAZOS DE CURA. A FISCALIZAÇÃO DEVE SER CONSULTADA EM CASO DE MUDANÇA.

6. CONSULTAR TECNOLOGISTA A FIM DE DEFINIR TRAÇOS E ADITIVOS ADEQUADOS.


7. VER LOCAÇÃO DESTA OBRA NO PROJETO GEOMÉTRICO DA VIA:

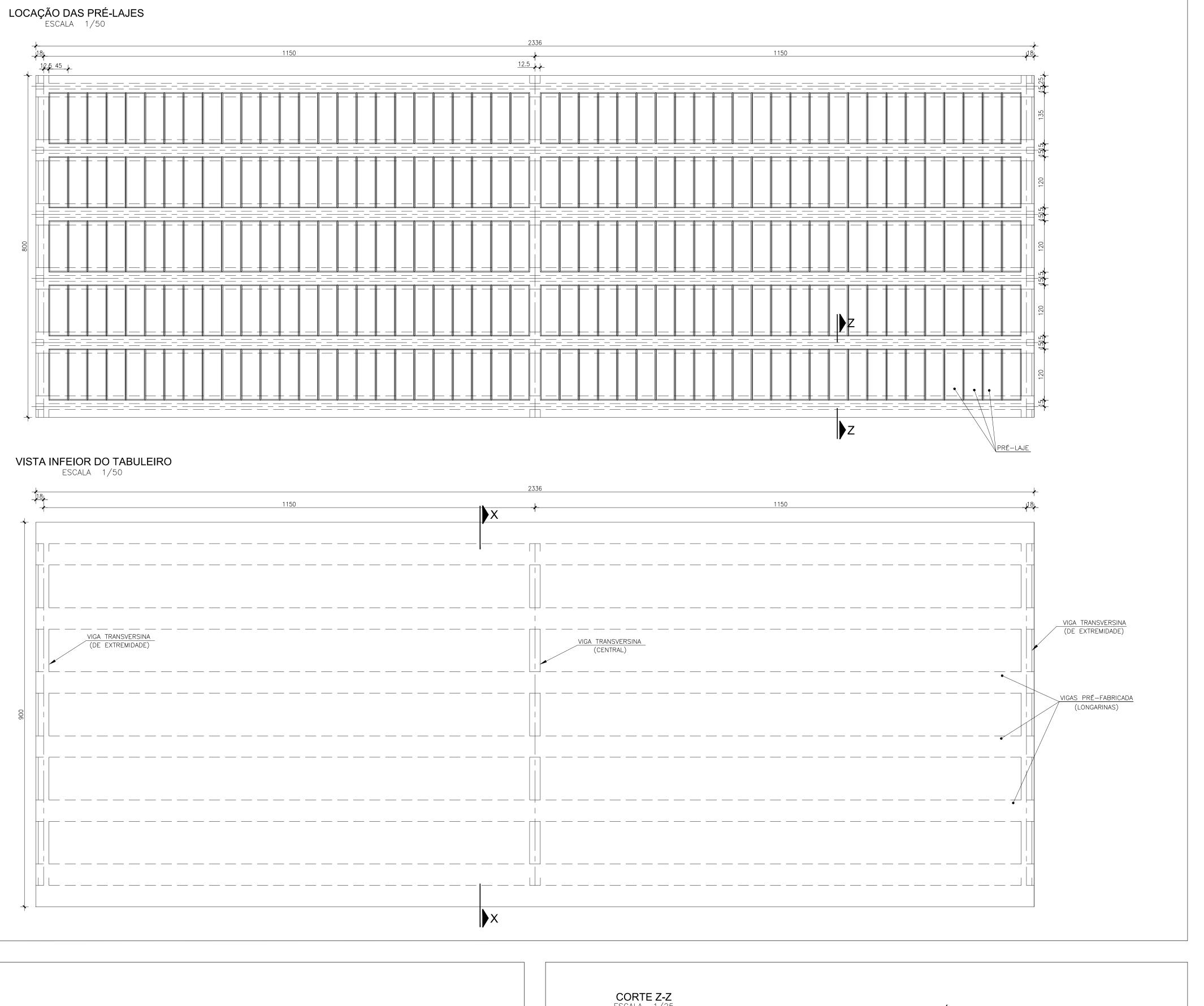
FORTALEZA_CEU_SANTÍSSIMA_TRINDADE_00.00_LR_01.01-LAY.DWG, RO, DE JANEIRO DE 2010.

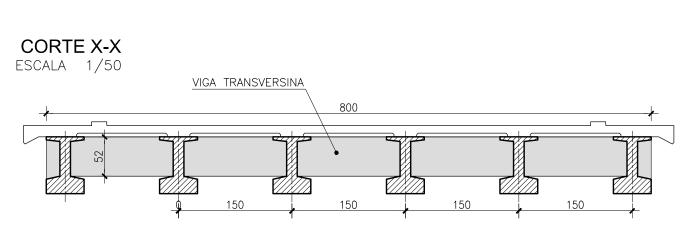
8. VER DETALHES DA PAVIMENTAÇÃO DOS ACESSOS NO PROJETO DE PAVIMENTAÇÃO DA VIA: CEU-SEÇÃO TIPO DE DETALHES.DWG, RO DE DEZEMBRO DE 2009.

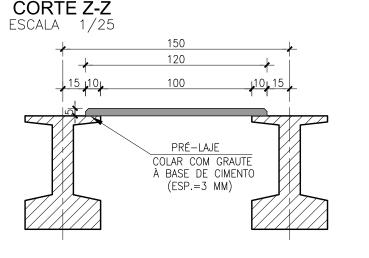
9. ESTE PROJETO FOI ELABORADO ATENDENDO AOS CRITÉRIOS DA ABNT E PARTE DO PRESSUPOSTO QUE A EXECUÇÃO E OS MATERIAIS EMPREGADOS TAMBÉM ATENDERÃO ÀS NORMAS APLICÁVEIS, PRINCIPALMENTE AS EXIGÊNCIAS DA NBR 14.931:2004 E DA NBR 12.655:2015 DENTRE OUTRAS.

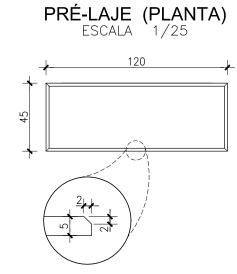
10. A PONTE FOI PROJETADA PARA SUPORTAR AS CARGAS DO VEÍCULO TIPO TB-45 CONFORME NBR 7188:2013.

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS


SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA
PROJETO BÁSICO


DESENHO PRANCHA Nº


02/07


CONDOMÍNIO ESPIRITUAL UIRAPURU - CEU PONTE NA ALAMEDA SANTÍSSIMA TRINDADE II FORMAS 2/3 - SEÇÃO, LOC. APOIOS, VIGAS E DETALHES

GERÊNCIA:	ENG. RAUL TIGRE DE ARRUDA LEITÃO		
COORDENAÇÃO:	ENG. BRUNO CAVALCANTE DE QUEIROZ		
PROJETO:	ENG. VICTOR G. REIS - RNP 061.269.127-6		
DESENHO:	S. BARROSO	ESCALA:	INDIC.
ARQUIVO:	SES Fortaleza - Ponte CEU - R0.dwg	DATA:	DEZ/2019

NOTA

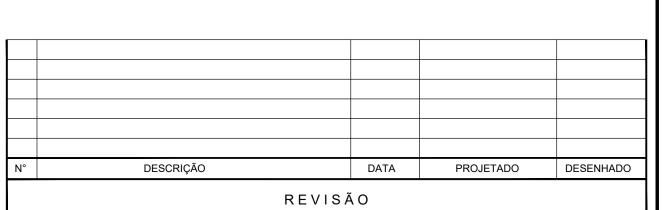
1. DIMENSÕES EM CENTÍMETROS, COTAS DE NÍVEL EM METROS, EXCETO ONDE INDICADO DE FORMA DIFERENTE.

2. CLASSE DE AGRESSIVIDADE AMBIENTAL: III

3. MATERIAIS:

CONCRETO: C40; FCK=40 MPA; ECS=32,1 GPA (AG. GRAÚDO: GRANITO OU GNAISSE); A/C MÁX.=0,45; CONSUMO MÍN. DE CIMENTO=360 KG/M3 CONFORME NBR 12655:2015

AÇOS: CA-50; FYK=500 MPA; ES=210 GPA; CA-60; FYK=600 MPA; ES=210 GPA; CONFORME NBR 7480:2007


- 4. COBRIMENTOS NOMINAIS: 3,5 CM (SUPERESTRUTURA) / 4,0 CM (INFRAESTRUTURA).
- 5. REALIZAR CURA POR ASPERSÃO TRÊS VEZES POR DIA DURANTE SETE DIAS APÓS A CONCRETAGEM. MÉTODOS ALTERNATIVOS, COMO CURA A VAPOR, PODEM REDUZIR OS PRAZOS DE CURA. A FISCALIZAÇÃO DEVE SER CONSULTADA EM CASO DE MUDANÇA.
- 6. CONSULTAR TECNOLOGISTA A FIM DE DEFINIR TRAÇOS E ADITIVOS ADEQUADOS.
- 7. VER LOCAÇÃO DESTA OBRA NO PROJETO GEOMÉTRICO DA VIA:

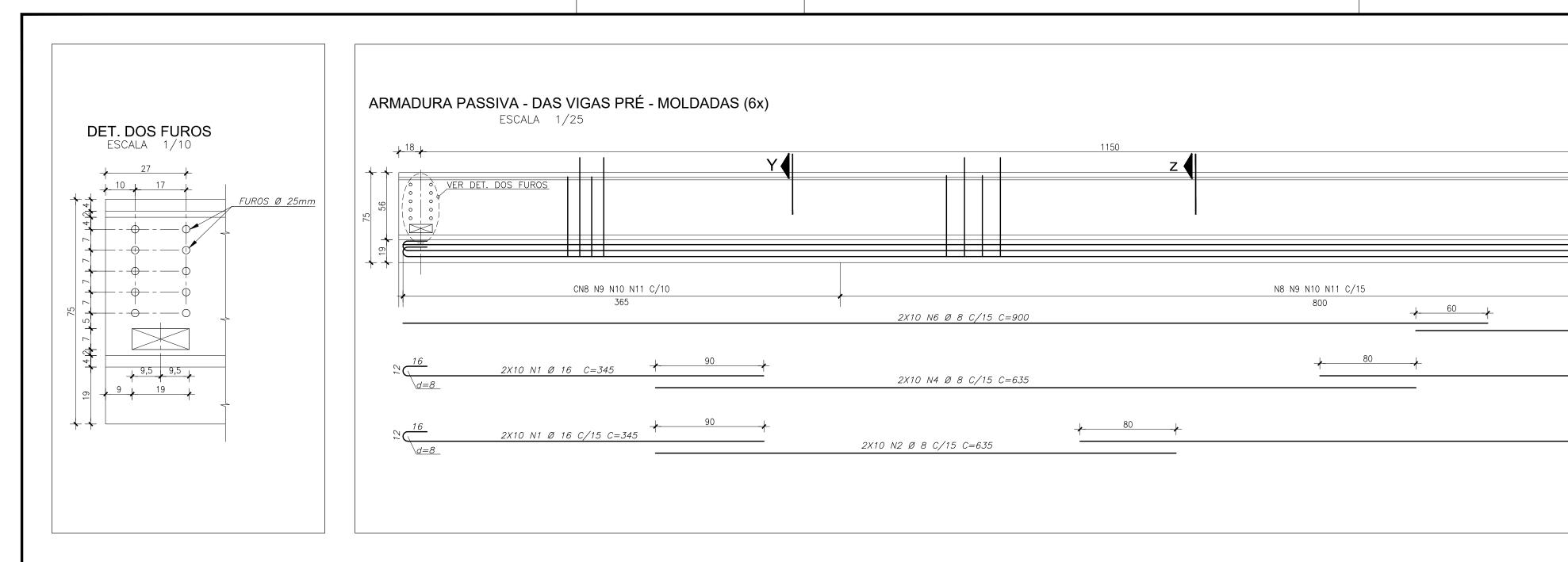
FORTALEZA_CEU_SANTÍSSIMA_TRINDADE_00.00_LR_01.01-LAY.DWG, RO, DE JANEIRO DE 2010.

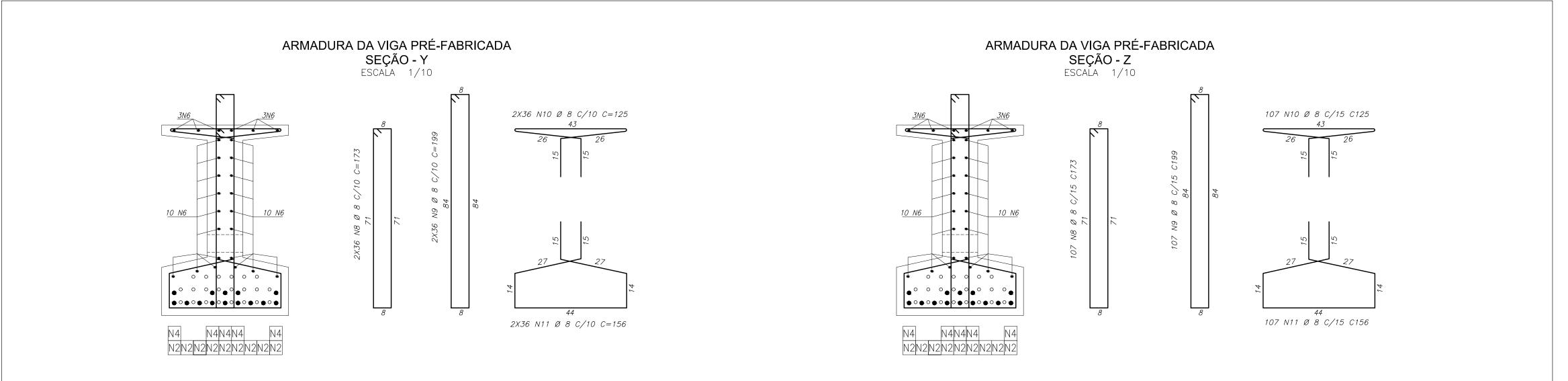
8. VER DETALHES DA PAVIMENTAÇÃO DOS ACESSOS NO PROJETO DE PAVIMENTAÇÃO DA VIA: CEU-SEÇÃO TIPO DE DETALHES.DWG, RO DE DEZEMBRO DE 2009.

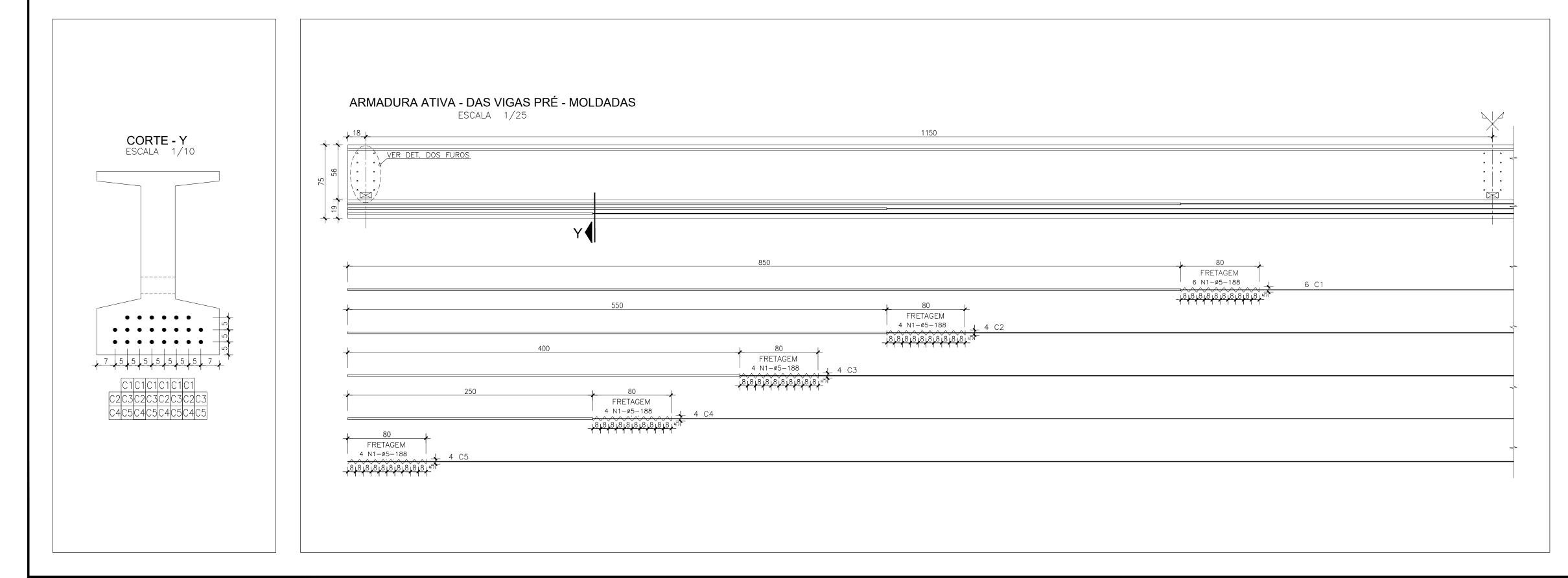
9. ESTE PROJETO FOI ELABORADO ATENDENDO AOS CRITÉRIOS DA ABNT E PARTE DO PRESSUPOSTO QUE A EXECUÇÃO E OS MATERIAIS EMPREGADOS TAMBÉM ATENDERÃO ÀS NORMAS APLICÁVEIS, PRINCIPALMENTE AS EXIGÊNCIAS DA NBR 14.931:2004 E DA NBR 12.655:2015 DENTRE OUTRAS.

10. A PONTE FOI PROJETADA PARA SUPORTAR AS CARGAS DO VEÍCULO TIPO TB-45 CONFORME NBR 7188:2013.

Cagece


COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS


SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA
PROJETO BÁSICO


DESENHO PRANCHA Nº

CONDOMÍNIO ESPIRITUAL UIRAPURU - CEU PONTE NA ALAMEDA SANTÍSSIMA TRINDADE II FORMAS 3/3 - TRANSVERSINAS, PRÉ-LAJES E VISTA INFER.

GERÊNCIA:	ENG. RAUL TIGRE DE ARRUDA LEITÃO		
COORDENAÇÃO:	ENG. BRUNO CAVALCANTE DE QUEIROZ		
PROJETO:	ENG. VICTOR G. REIS - RNP 061.269.127-6		
DESENHO:	S. BARROSO	ESCALA:	INDIC.
ARQUIVO:	SES Fortaleza - Ponte CEU - R0.dwg	DATA:	DEZ/2019

NOTAS

2X10 N7 Ø 8 C/15 C=640

1. DIMENSÕES EM CENTÍMETROS, COTAS DE NÍVEL EM METROS, EXCETO ONDE INDICADO DE FORMA DIFERENTE.

2. CLASSE DE AGRESSIVIDADE AMBIENTAL: III

3. MATERIAIS:

CONCRETO: C40; FCK=40 MPA; ECS=32,1 GPA (AG. GRAÚDO: GRANITO OU GNAISSE); A/C MÁX.=0,45; CONSUMO MÍN. DE CIMENTO=360 KG/M3 CONFORME NBR 12655:2015

AÇOS: CA-50; FYK=500 MPA; ES=210 GPA; CA-60; FYK=600 MPA; ES=210 GPA; CONFORME NBR 7480:2007

4. COBRIMENTOS NOMINAIS: 3,5 CM (SUPERESTRUTURA) / 4,0 CM (INFRAESTRUTURA).

5. REALIZAR CURA POR ASPERSÃO TRÊS VEZES POR DIA DURANTE SETE DIAS APÓS A CONCRETAGEM. MÉTODOS ALTERNATIVOS, COMO CURA A VAPOR, PODEM REDUZIR OS PRAZOS DE CURA. A FISCALIZAÇÃO DEVE SER CONSULTADA EM CASO DE MUDANÇA.

6. CONSULTAR TECNOLOGISTA A FIM DE DEFINIR TRAÇOS E ADITIVOS ADEQUADOS.

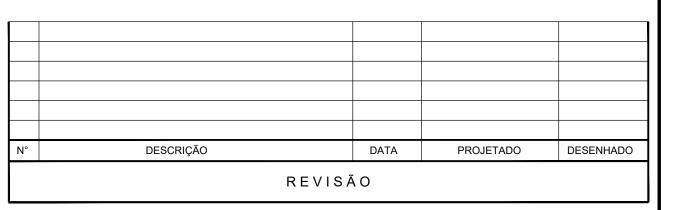
7. VER LOCAÇÃO DESTA OBRA NO PROJETO GEOMÉTRICO DA VIA:

FORTALEZA_CEU_SANTÍSSIMA_TRINDADE_00.00_LR_01.01-LAY.DWG, RO, DE JANEIRO DE 2010.

8. VER DETALHES DA PAVIMENTAÇÃO DOS ACESSOS NO PROJETO DE PAVIMENTAÇÃO DA VIA: CEU-SEÇÃO TIPO DE DETALHES.DWG, RO DE DEZEMBRO DE 2009.

9. ESTE PROJETO FOI ELABORADO ATENDENDO AOS CRITÉRIOS DA ABNT E PARTE DO PRESSUPOSTO QUE A EXECUÇÃO E OS MATERIAIS EMPREGADOS TAMBÉM ATENDERÃO ÀS NORMAS APLICÁVEIS, PRINCIPALMENTE AS EXIGÊNCIAS DA NBR 14.931:2004 E DA NBR 12.655:2015 DENTRE OUTRAS.

10. A PONTE FOI PROJETADA PARA SUPORTAR AS CARGAS DO VEÍCULO TIPO TB-45 CONFORME NBR 7188:2013.


ARMADURAS							
	AÇO	POS	BIT. (MM)	QUANT.	COMPRIMENTO		
					UNIT. (CM)	TOTAL (CM)	
VIGAS PRÉ-	FABRICAD	AS (6X)					
	CA-50	1	16	168	345	57960	
	CA-50	2	12,5	60	434	26040	
	CA-50	3	12,5	54	1200	64800	
	CA-50	4	12,5	60	634	38040	
	CA-50	5	12,5	30	800	24000	
	CA-50	6	8	120	900	108000	
	CA-50	7	8	120	640	76800	
	CA-50	8	8	1074	173	185802	
	CA-50	9	8	1074	199	213726	
	CA-50	10	8	1074	125	134250	
	CA-50	11	8	1074	156	167544	

		RESUMO	
AÇO	(MM)	COMPRIMENTO (CM)	MASSA (KG)
CA-50	8	886122	3496
CA-50	12,5	152880	1473
CA-50	16	57960	915
MASSA TO	OTAL AÇO C	4-50 (KG):	5884

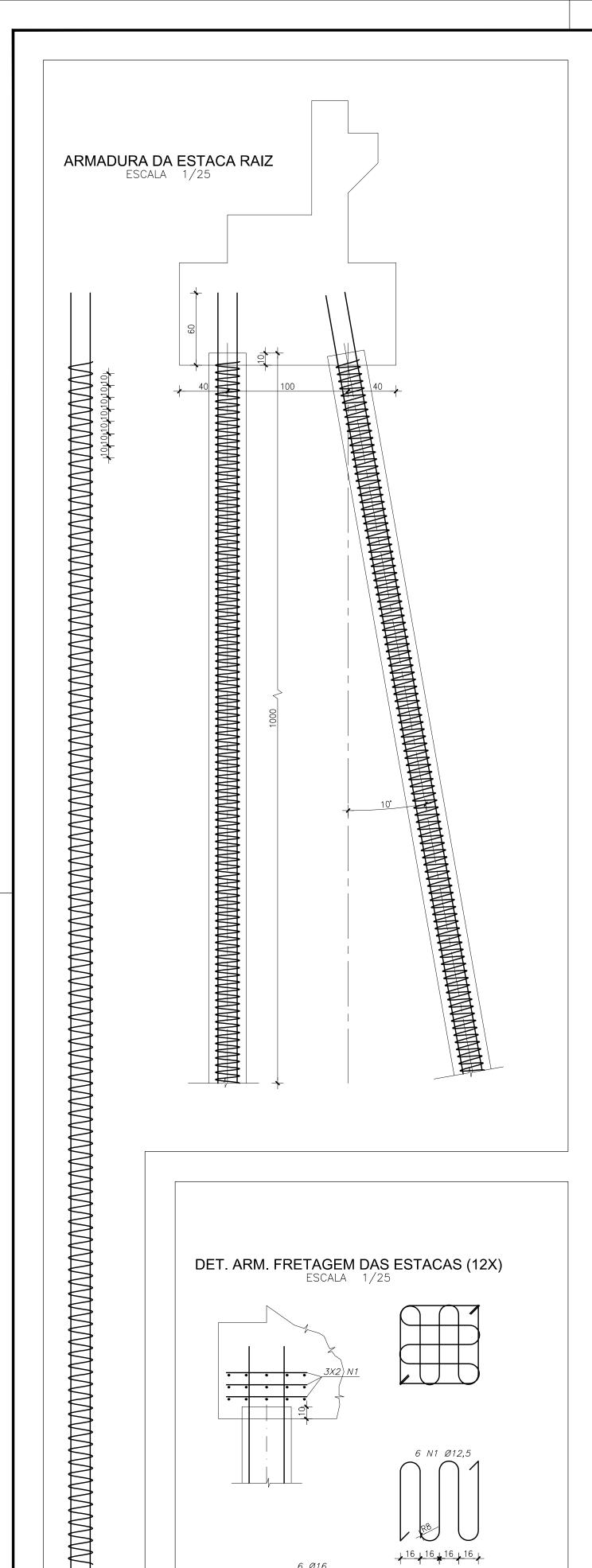
RESUMO ARM. FRETAGEM CABOS - AÇO CA-50							
POSIÇÃO QUANT. BITOLA (MM) COMPRIMENTO MASSA							
1 OSIÇAO	QUAINT.	BITOLA (IVIIVI)	UNIT. (M)	TOTAL (M)	(KG)		
N1	264	5	1,88	496,32	76		

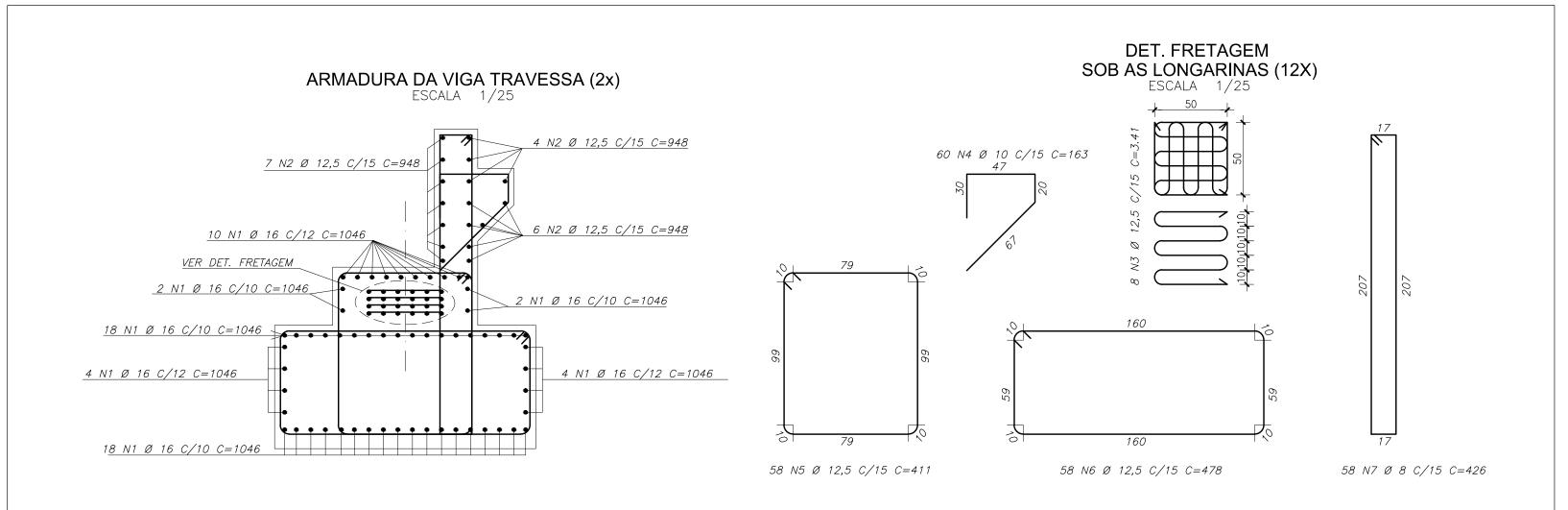
PROTENSÃO						
POSIÇÃO	CORDOALHAS	COMP. UNITÁRIO (M)	TIPO	PROTENS ÃO		
C1 A C3	1 Ø 12,7 mm	23,33	PRÉ-TRAÇÃO	4 TF (140 KN		

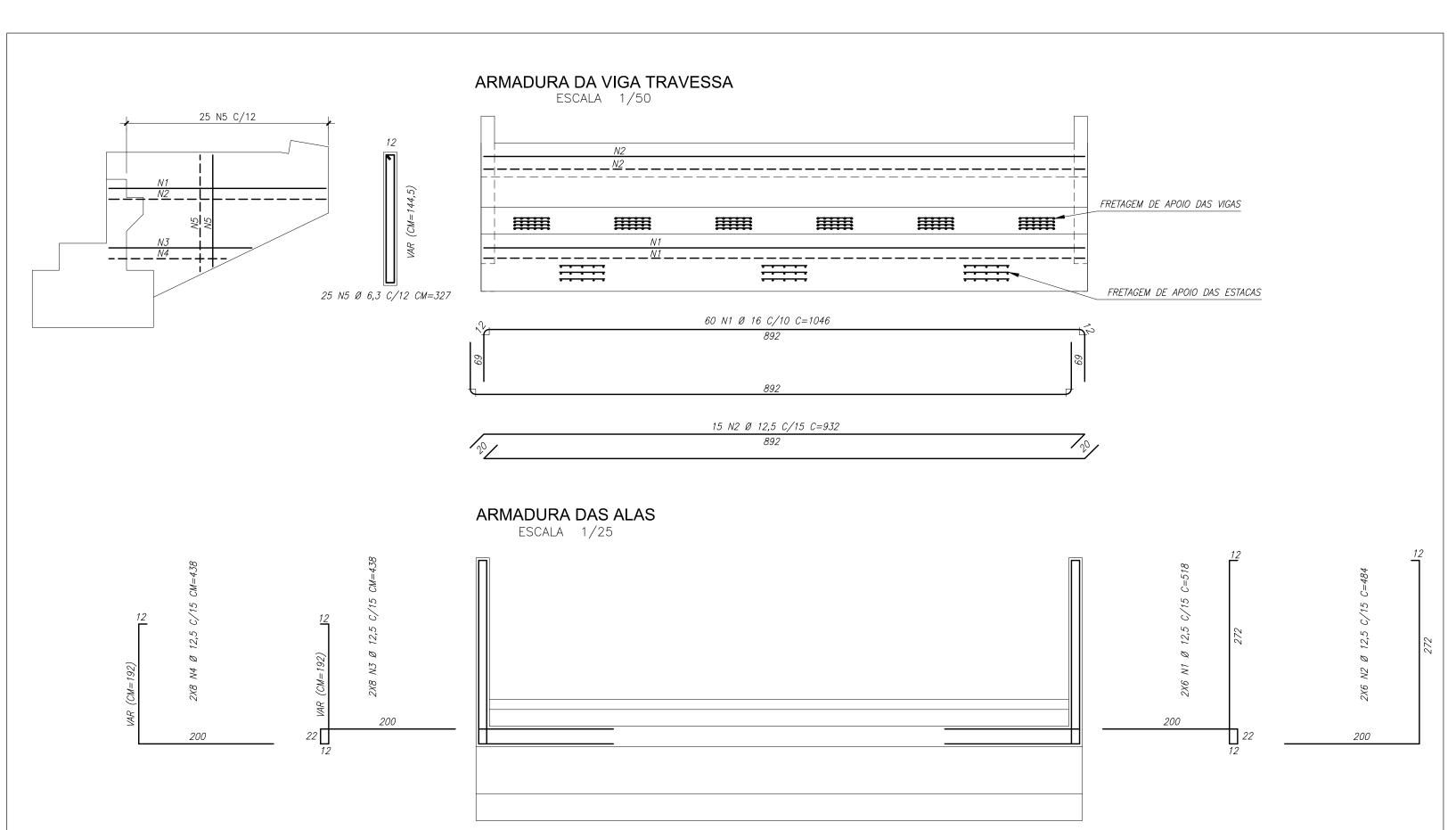
RESUMO CABOS - AÇO CP-190 RB					
AÇO QUANT. COMP. UNITÁRIO COMP. TOTAL (M) MASSA					
AÇO	QUANT.	(M)	COMP. TOTAL (M)	(KG)	
CP-190 RB	132	23,33	3079,56	2464	

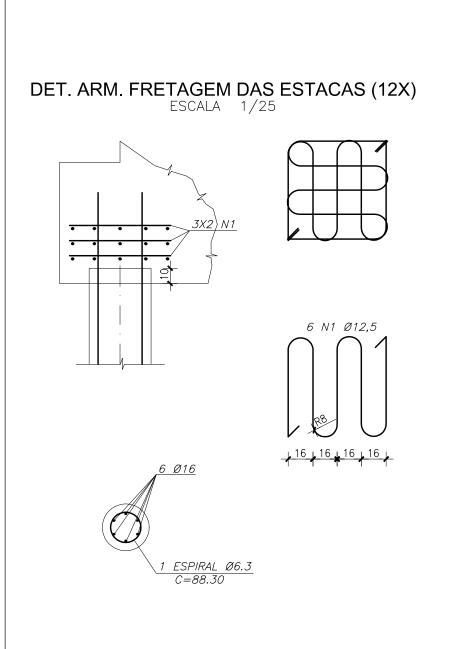
COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ
DIRETORIA DE ENGENHARIA
GERÊNCIA DE PROJETOS

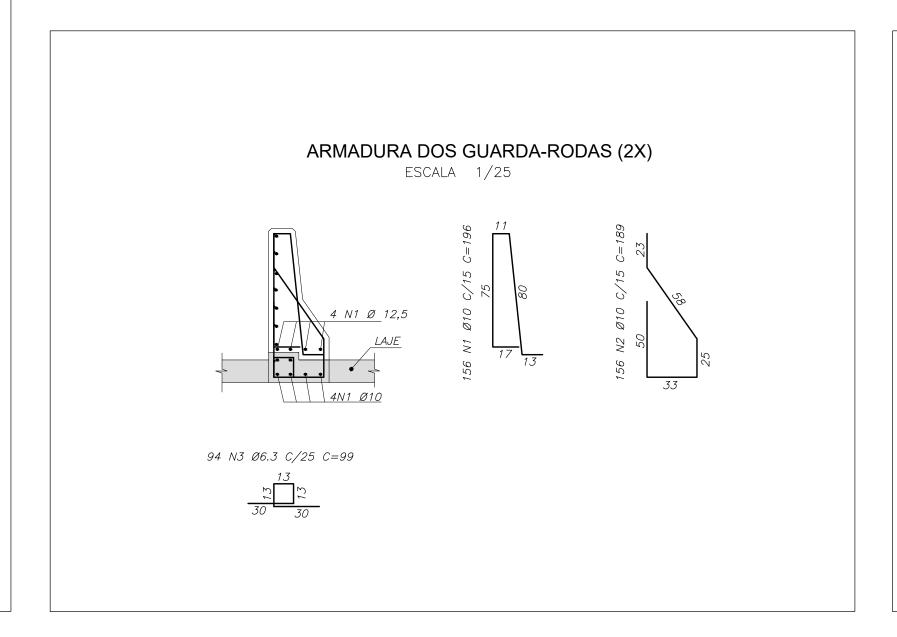
SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA
PROJETO BÁSICO

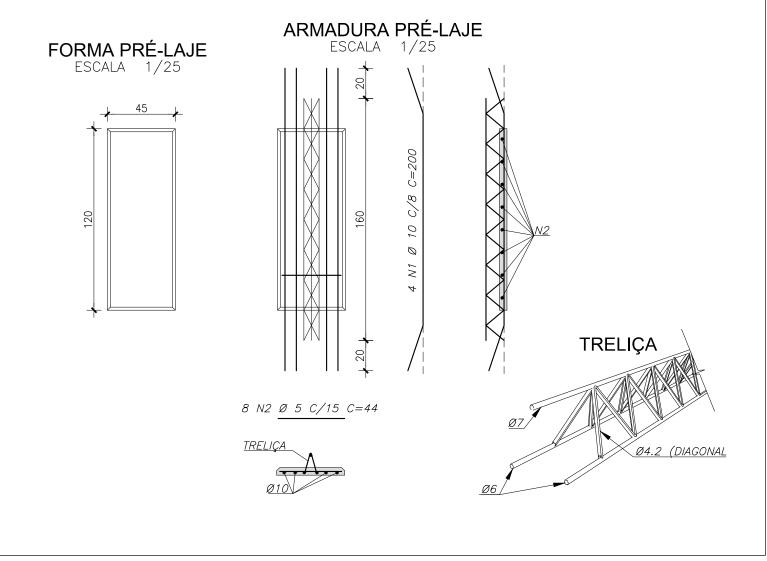

DESENHO PRANCHA Nº


04/07


01/04


CONDOMÍNIO ESPIRITUAL UIRAPURU - CEU PONTE NA ALAMEDA SANTÍSSIMA TRINDADE II ARM. 1/4 - VIGA PRÉ-FABRICADA


GERÊNCIA:	ENG. RAUL TIGRE DE ARRUDA LEITÃO		
COORDENAÇÃO:	ENG. BRUNO CAVALCANTE DE QUEIROZ		
PROJETO:	ENG. VICTOR G. REIS - RNP 061.269.127-6		
DESENHO:	S. BARROSO	ESCALA:	INDIC.
ARQUIVO:	SES Fortaleza - Ponte CEU - R0.dwg	DATA:	DEZ/2019



NOTAS:

1. DIMENSÕES EM CENTÍMETROS, COTAS DE NÍVEL EM METROS, EXCETO ONDE INDICADO DE FORMA DIFERENTE.

2. CLASSE DE AGRESSIVIDADE AMBIENTAL: III

MATERIAIS:

CONCRETO: C40; FCK=40 MPA; ECS=32,1 GPA (AG. GRAÚDO: GRANITO OU GNAISSE); A/C MÁX.=0,45; CONSUMO MÍN. DE CIMENTO=360 KG/M3 CONFORME NBR 12655:2015

AÇOS: CA-50; FYK=500 MPA; ES=210 GPA; CA-60; FYK=600 MPA; ES=210 GPA; CONFORME NBR 7480:2007

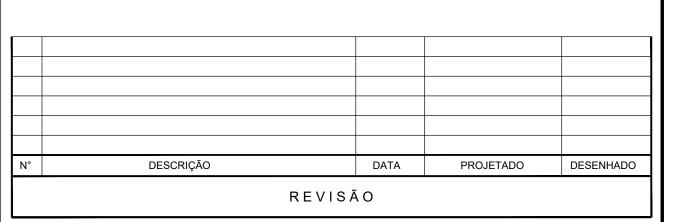
4. COBRIMENTOS NOMINAIS: 3,5 CM (SUPERESTRUTURA) / 4,0 CM (INFRAESTRUTURA).

5. REALIZAR CURA POR ASPERSÃO TRÊS VEZES POR DIA DURANTE SETE DIAS APÓS A CONCRETAGEM. MÉTODOS ALTERNATIVOS, COMO CURA A VAPOR, PODEM REDUZIR OS PRAZOS DE CURA. A FISCALIZAÇÃO DEVE SER CONSULTADA EM CASO DE MUDANÇA.

6. CONSULTAR TECNOLOGISTA A FIM DE DEFINIR TRAÇOS E ADITIVOS ADEQUADOS.

7. VER LOCAÇÃO DESTA OBRA NO PROJETO GEOMÉTRICO DA VIA:

FORTALEZA_CEU_SANTÍSSIMA_TRINDADE_00.00_LR_01.01-LAY.DWG, RO, DE JANEIRO DE 2010.

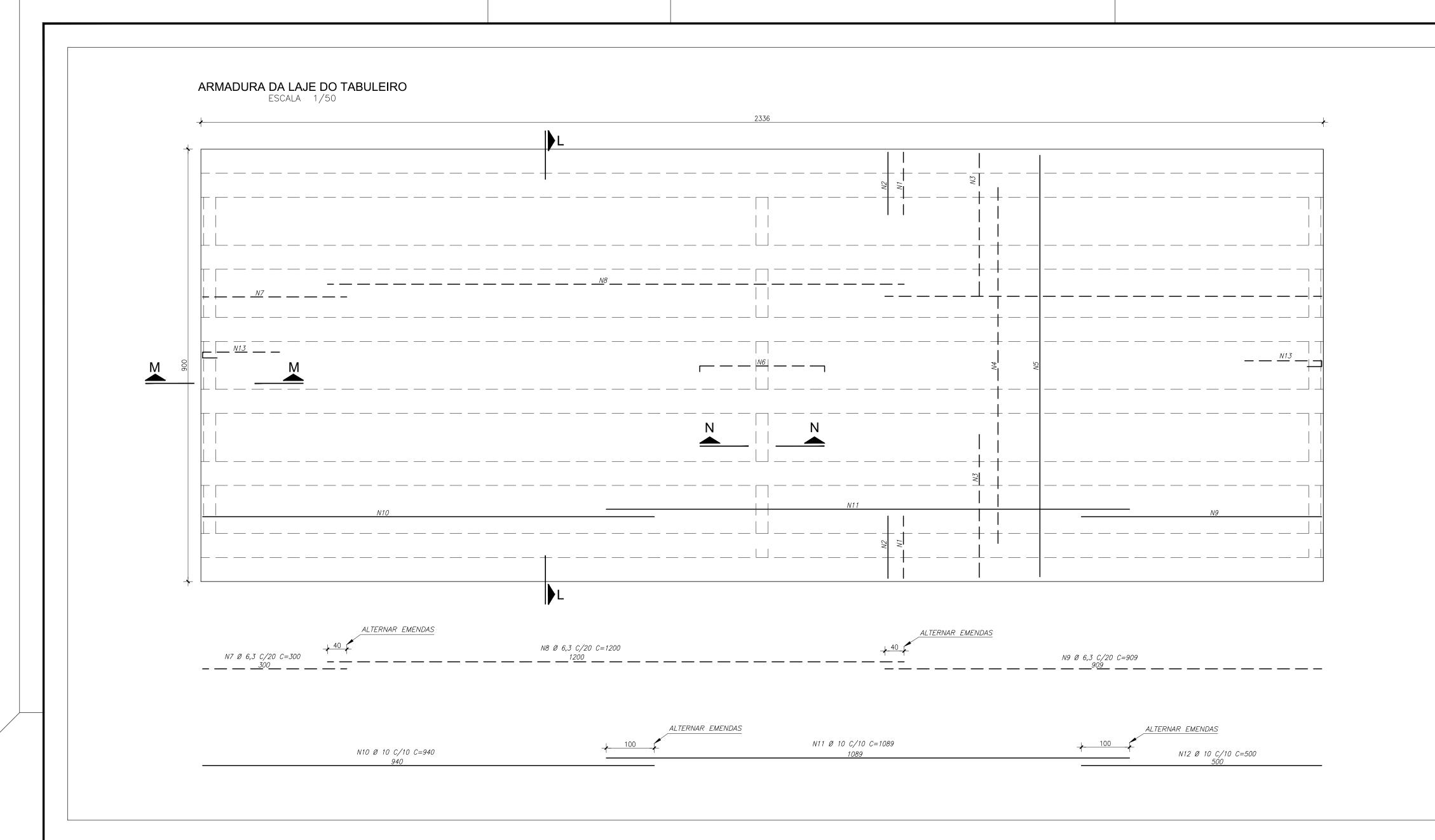

8. VER DETALHES DA PAVIMENTAÇÃO DOS ACESSOS NO PROJETO DE PAVIMENTAÇÃO DA VIA: CEU-SEÇÃO TIPO DE DETALHES.DWG, RO DE DEZEMBRO DE 2009.

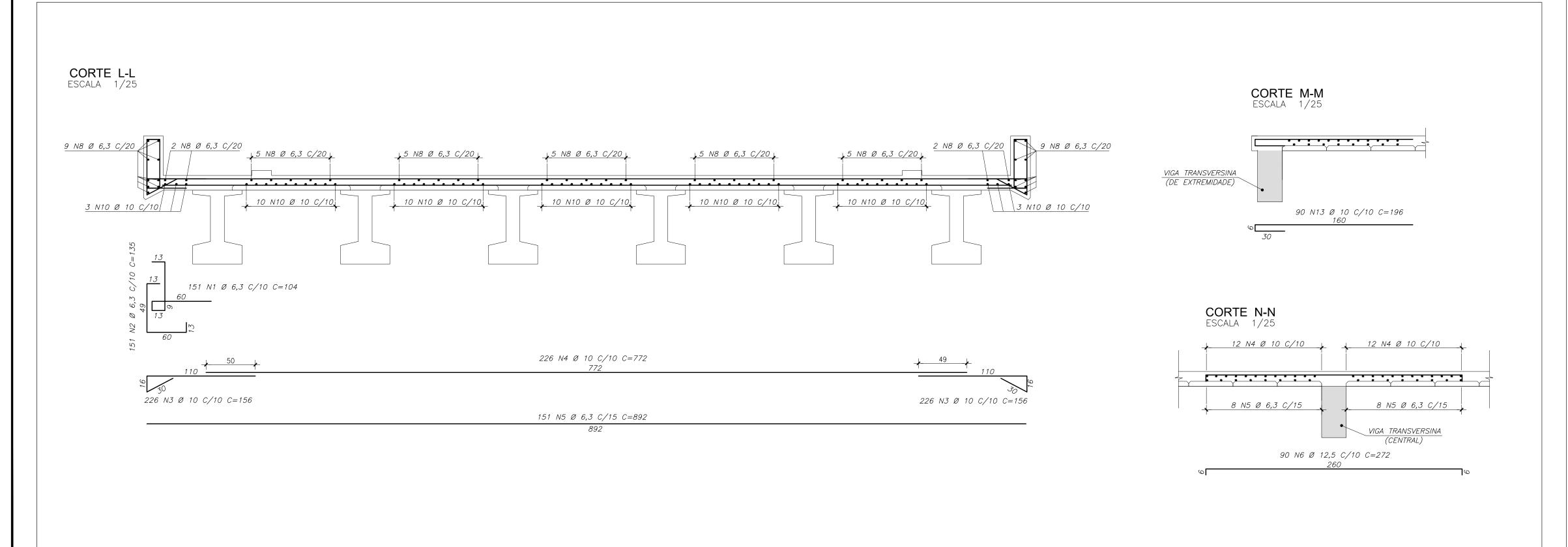
9. ESTE PROJETO FOI ELABORADO ATENDENDO AOS CRITÉRIOS DA ABNT E PARTE DO PRESSUPOSTO QUE A EXECUÇÃO E OS MATERIAIS EMPREGADOS TAMBÉM ATENDERÃO ÀS NORMAS APLICÁVEIS, PRINCIPALMENTE AS EXIGÊNCIAS DA NBR 14.931:2004 E DA NBR 12.655:2015 DENTRE OUTRAS.

10. A PONTE FOI PROJETADA PARA SUPORTAR AS CARGAS DO VEÍCULO TIPO TB-45 CONFORME NBR 7188:2013.

			ARMADURA	S		
	AÇO	POS	BIT. (MM)	QUANT.	COMPR	IMENTO
					UNIT. (CM)	TOTAL (CN
VIGAS TRAVE	SSAS (2X)					
	CA-50	1	16	120	1046	125520
	CA-50	2	12,5	30	932	27960
	CA-50	3	12,5	16	341	5456
	CA-50	4	10	116	163	18908
	CA-50	5	12,5	116	411	47676
	CA-50	6	12,5	116	487	56492
	CA-50	7	8	116	426	49416
PRÉ-LAJES (2	250X)					•
	CA-50	1	10	1000	200	200000
	CA-50	2	12,5	2000	44	88000
FRETAGEM D	AS ESTAC	AS (12X)			•	•
	CA-50	1	12,5	144	386	55584
ESTACAS-RA	IZ (12X)					
	CA-50	1	16	72	1060	76320
	CA-50	2	6,3	12	6362	76344
GUARDA-ROD	AS (2X)				•	•
	CA-50	1	10	312	196	61152
	CA-50	2	10	312	189	58968
	CA-50	3	6,3	188	99	18612
ALAS (4X)	1,				•	•
	CA-50	1	12,5	48	518	24864
	CA-50	2	12,5	48	484	23232
	CA-50	3	12,5	64	438	28032
	CA-50	4	12,5	64	438	28032

RESUMO					
AÇO	BIT. (MM)	COMPRIMENTO (CM)	MASSA (KG)		
CA-50	6,3	94956	232		
CA-50	8	49416	195		
CA-50	10	339028	2090		
CA-50	12,5	385328	3712		
CA-50	16	201840	3186		
MASS	A TOTAL AÇO C	CA-50 (KG):	9415		




	_		
OMPANHIA DE ÁGUA E ESGOTO DO CEARÁ		DESENHO	PRANCHA Nº
DIRETORIA DE ENGENHARIA		02/04	05/07
GERÊNCIA DE PROJETOS		02/04	03/07

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA PROJETO BÁSICO

CONDOMÍNIO ESPIRITUAL UIRAPURU - CEU PONTE NA ALAMEDA SANTÍSSIMA TRINDADE II ARM. 2/4 - ENCONTROS, PRÉ-LAJES E GUARDA-RODAS

GERÊNCIA:	ENG. RAUL TIGRE DE ARRUDA LEITÃO		
COORDENAÇÃO:	ENG. BRUNO CAVALCANTE DE QUEIROZ		
PROJETO:	ENG. VICTOR G. REIS - RNP 061.269.127-6		
DESENHO:	S. BARROSO	ESCALA:	INDIC.
ARQUIVO:	SES Fortaleza - Ponte CEU - R0.dwg	DATA:	DEZ/2019

NOTAS

1. DIMENSÕES EM CENTÍMETROS, COTAS DE NÍVEL EM METROS, EXCETO ONDE INDICADO DE FORMA DIFERENTE.

2. CLASSE DE AGRESSIVIDADE AMBIENTAL: III

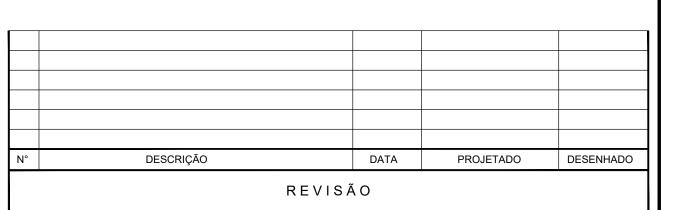
3. MATERIAIS:

CONCRETO: C40; FCK=40 MPA; ECS=32,1 GPA (AG. GRAÚDO: GRANITO OU GNAISSE); A/C MÁX.=0,45; CONSUMO MÍN. DE CIMENTO=360 KG/M3 CONFORME NBR 12655:2015

AÇOS: CA-50; FYK=500 MPA; ES=210 GPA; CA-60; FYK=600 MPA; ES=210 GPA; CONFORME NBR 7480:2007

- 4. COBRIMENTOS NOMINAIS: 3,5 CM (SUPERESTRUTURA) / 4,0 CM (INFRAESTRUTURA).
- 5. REALIZAR CURA POR ASPERSÃO TRÊS VEZES POR DIA DURANTE SETE DIAS APÓS A CONCRETAGEM. MÉTODOS ALTERNATIVOS, COMO CURA A VAPOR, PODEM REDUZIR OS PRAZOS DE CURA. A FISCALIZAÇÃO DEVE SER CONSULTADA EM CASO DE MUDANÇA.
- 6. CONSULTAR TECNOLOGISTA A FIM DE DEFINIR TRAÇOS E ADITIVOS ADEQUADOS.
- 7. VER LOCAÇÃO DESTA OBRA NO PROJETO GEOMÉTRICO DA VIA:

FORTALEZA_CEU_SANTÍSSIMA_TRINDADE_00.00_LR_01.01-LAY.DWG, RO, DE JANEIRO DE 2010.


8. VER DETALHES DA PAVIMENTAÇÃO DOS ACESSOS NO PROJETO DE PAVIMENTAÇÃO DA VIA: CEU-SEÇÃO TIPO DE DETALHES.DWG, RO DE DEZEMBRO DE 2009.

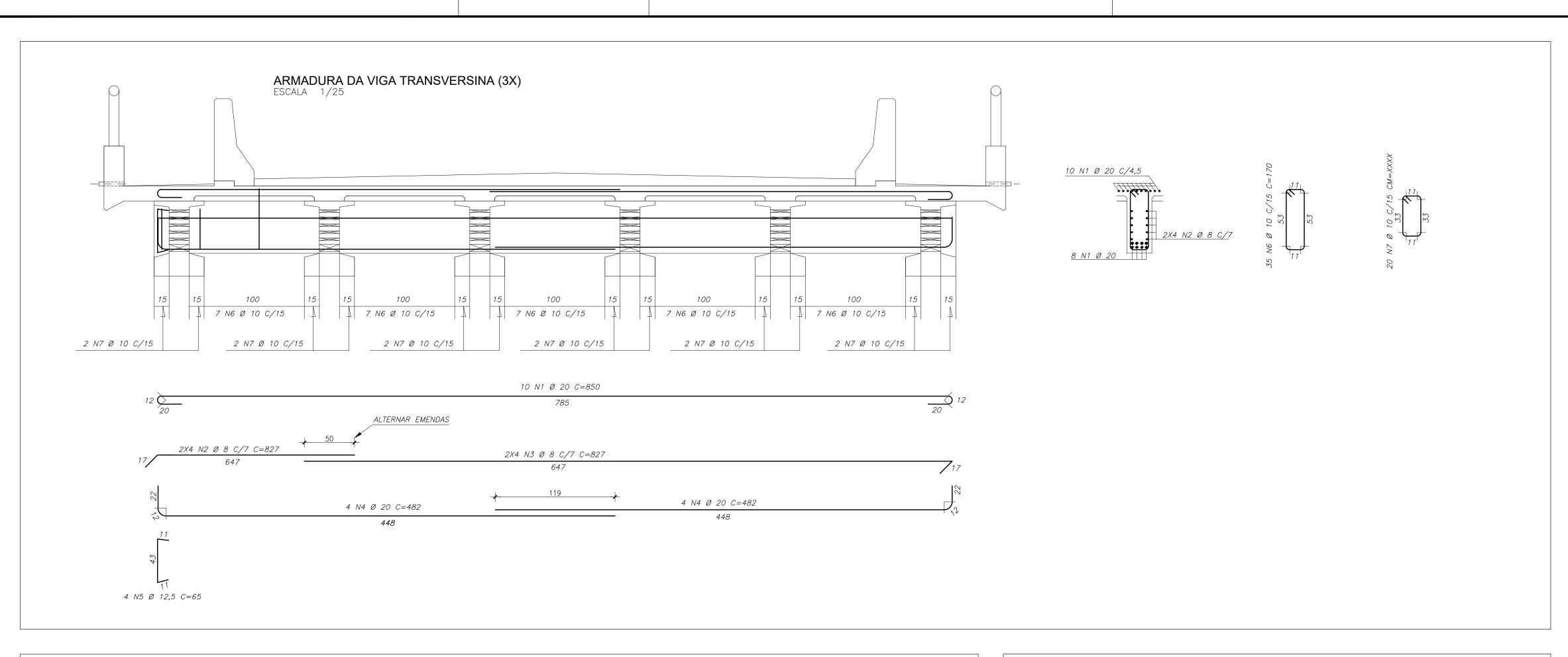
9. ESTE PROJETO FOI ELABORADO ATENDENDO AOS CRITÉRIOS DA ABNT E PARTE DO PRESSUPOSTO QUE A EXECUÇÃO E OS MATERIAIS EMPREGADOS TAMBÉM ATENDERÃO ÀS NORMAS APLICÁVEIS, PRINCIPALMENTE AS EXIGÊNCIAS DA NBR 14.931:2004 E DA NBR 12.655:2015 DENTRE OUTRAS.

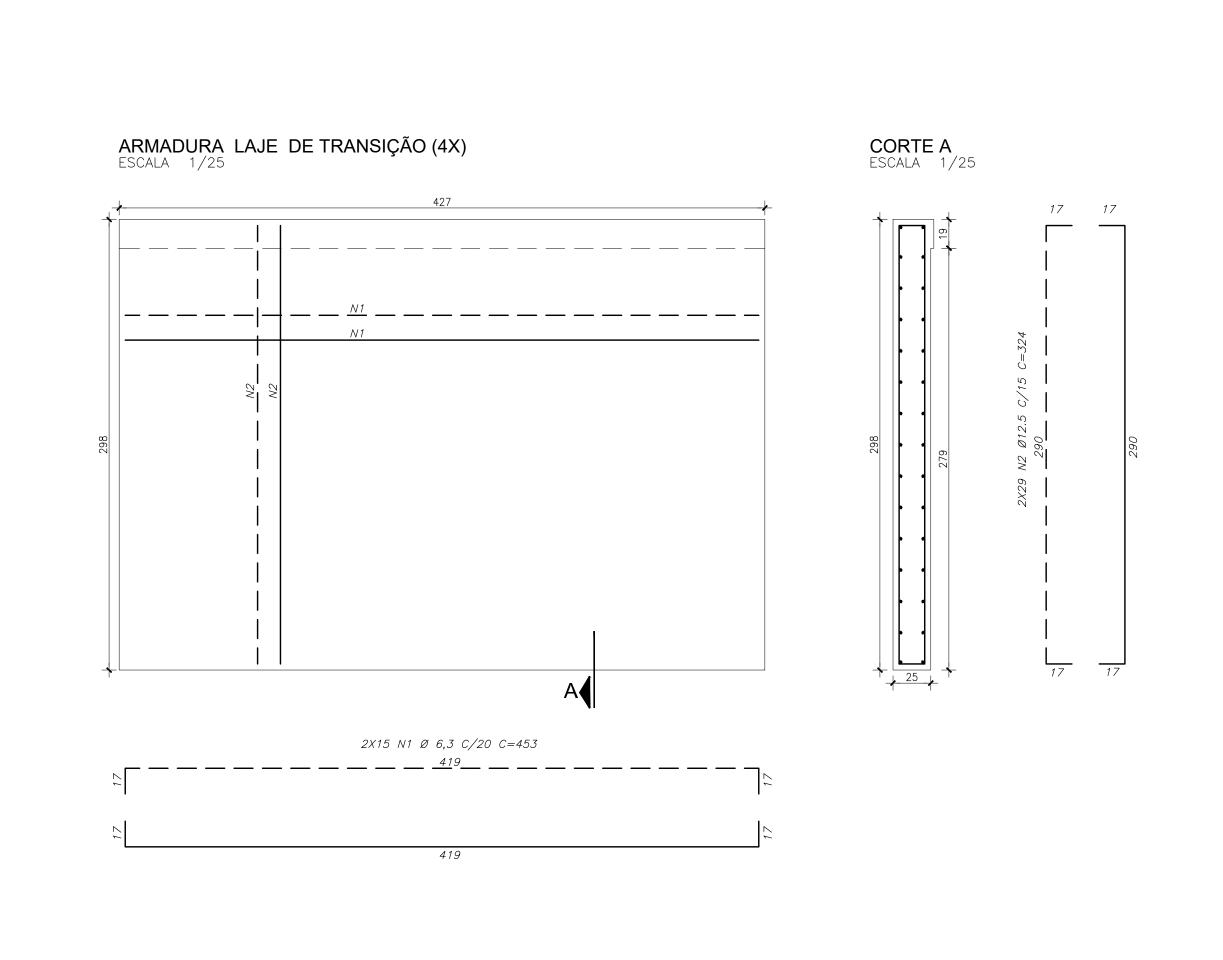
10. A PONTE FOI PROJETADA PARA SUPORTAR AS CARGAS DO VEÍCULO TIPO TB-45 CONFORME NBR 7188:2013.

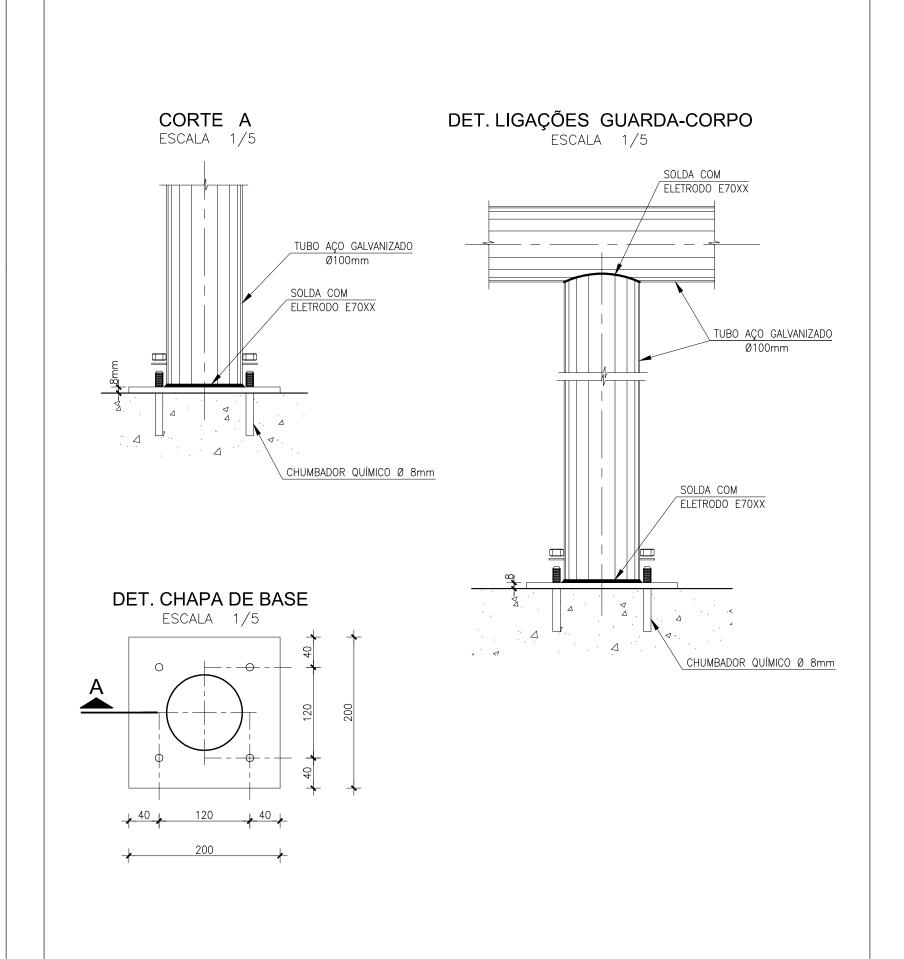
ARMADURAS								
	AÇO	POS	BIT. (MM)	QUANT.	COMPRIMENTO			
					UNIT. (CM)	TOTAL (CM)		
LAJE DO TAB	LAJE DO TABULEIRO							
	CA-50	1	6,3	302	104	31408		
	CA-50	2	6,3	302	135	40770		
	CA-50	3	10	452	156	70512		
	CA-50	4	10	226	772	174472		
	CA-50	5	6,3	151	892	134692		
	CA-50	6	12,5	91	272	24752		
	CA-50	7	6,3	46	300	13800		
	CA-50	8	6,3	46	1200	55200		
	CA-50	9	6,3	46	909	41814		
	CA-50	10	10	91	940	85540		
	CA-50	11	10	91	1089	99099		
	CA-50	12	10	91	500	45500		
	CA-50	13	10	91	196	17836		

		RESUMO	
AÇO	BIT. (MM)	COMPRIMENTO (CM)	MASSA (KG)
CA-50	6,3	317684	777
CA-50	10	492959	3039
CA-50	12,5	24752	238
MASS	A TOTAL AÇO	CA-50 (KG):	4055

	COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ
	DIRETORIA DE ENGENHARIA
	GERÊNCIA DE PROJETOS
l '	


SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA
PROJETO BÁSICO


DESENHO PRANCHA Nº


03/04

CONDOMÍNIO ESPIRITUAL UIRAPURU - CEU PONTE NA ALAMEDA SANTÍSSIMA TRINDADE II ARM. 3/4 - LAJE DO TABULEIRO

GERÊNCIA:	ENG. RAUL TIGRE DE ARRUDA LEITÃO		
COORDENAÇÃO:	ENG. BRUNO CAVALCANTE DE QUEIROZ		
PROJETO:	ENG. VICTOR G. REIS - RNP 061.269.127-6		
DESENHO:	S. BARROSO	ESCALA:	INDIC.
ARQUIVO:	SES Fortaleza - Ponte CEU - R0.dwg	DATA:	DEZ/2019

NOTAS:

1. DIMENSÕES EM CENTÍMETROS, COTAS DE NÍVEL EM METROS, EXCETO ONDE INDICADO DE FORMA DIFERENTE.

2. CLASSE DE AGRESSIVIDADE AMBIENTAL: III

3. MATERIAIS:

CONCRETO: C40; FCK=40 MPA; ECS=32,1 GPA (AG. GRAÚDO: GRANITO OU GNAISSE); A/C MÁX.=0,45; CONSUMO MÍN. DE CIMENTO=360 KG/M3 CONFORME NBR 12655:2015

AÇOS: CA-50; FYK=500 MPA; ES=210 GPA; CA-60; FYK=600 MPA; ES=210 GPA; CONFORME NBR 7480:2007

4. COBRIMENTOS NOMINAIS: 3,5 CM (SUPERESTRUTURA) / 4,0 CM (INFRAESTRUTURA).

5. REALIZAR CURA POR ASPERSÃO TRÊS VEZES POR DIA DURANTE SETE DIAS APÓS A CONCRETAGEM. MÉTODOS ALTERNATIVOS, COMO CURA A VAPOR, PODEM REDUZIR OS PRAZOS DE CURA. A FISCALIZAÇÃO DEVE SER CONSULTADA EM CASO DE MUDANÇA.

6. CONSULTAR TECNOLOGISTA A FIM DE DEFINIR TRAÇOS E ADITIVOS ADEQUADOS.

7. VER LOCAÇÃO DESTA OBRA NO PROJETO GEOMÉTRICO DA VIA:

FORTALEZA_CEU_SANTÍSSIMA_TRINDADE_00.00_LR_01.01-LAY.DWG, RO, DE JANEIRO DE 2010.

8. VER DETALHES DA PAVIMENTAÇÃO DOS ACESSOS NO PROJETO DE PAVIMENTAÇÃO DA VIA: CEU—SEÇÃO TIPO DE DETALHES.DWG, RO DE DEZEMBRO DE 2009.

9. ESTE PROJETO FOI ELABORADO ATENDENDO AOS CRITÉRIOS DA ABNT E PARTE DO PRESSUPOSTO QUE A EXECUÇÃO E OS MATERIAIS EMPREGADOS TAMBÉM ATENDERÃO ÀS NORMAS APLICÁVEIS, PRINCIPALMENTE AS EXIGÊNCIAS DA NBR 14.931:2004 E DA NBR 12.655:2015 DENTRE OUTRAS.

10. A PONTE FOI PROJETADA PARA SUPORTAR AS CARGAS DO VEÍCULO TIPO TB-45 CONFORME NBR 7188:2013.

ARMADURAS						
	AÇO	POS	BIT. (MM)	QUANT.	COMPRIMENTO	
					UNIT. (CM)	TOTAL (CM)
VIGA TRAVES	SSA (3X)					
	CA-50	1	20	30	850	25500
	CA-50	2	8	24	214	5136
	CA-50	3	8	24	827	19848
	CA-50	4	20	48	482	23136
	CA-50	5	12,5	24	65	1560
	CA-50	6	10	105	170	17850
	CA-50	7	10	60	147	8820
LAJE DE TRANSIÇÃO (4X)						
	CA-50	1	12,5	232	324	75168
	CA-50	2	6,3	120	453	54360

		RESUMO	
AÇO	BIT. (MM)	COMPRIMENTO (CM)	MASSA (KG)
CA-50	6,3	54360	133
CA-50	8	24984	99
CA-50	10	26670	164
CA-50	12,5	76728	739
CA-50	20	48636	1199
MASSA TOTAL AÇO CA-50 (KG): 2335			

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ
DIRETORIA DE ENGENHARIA
GERÊNCIA DE PROJETOS

PROJETO BÁSICO

CONDOMÍNIO ESPIRITUAL UIRAPURU - CEU

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA

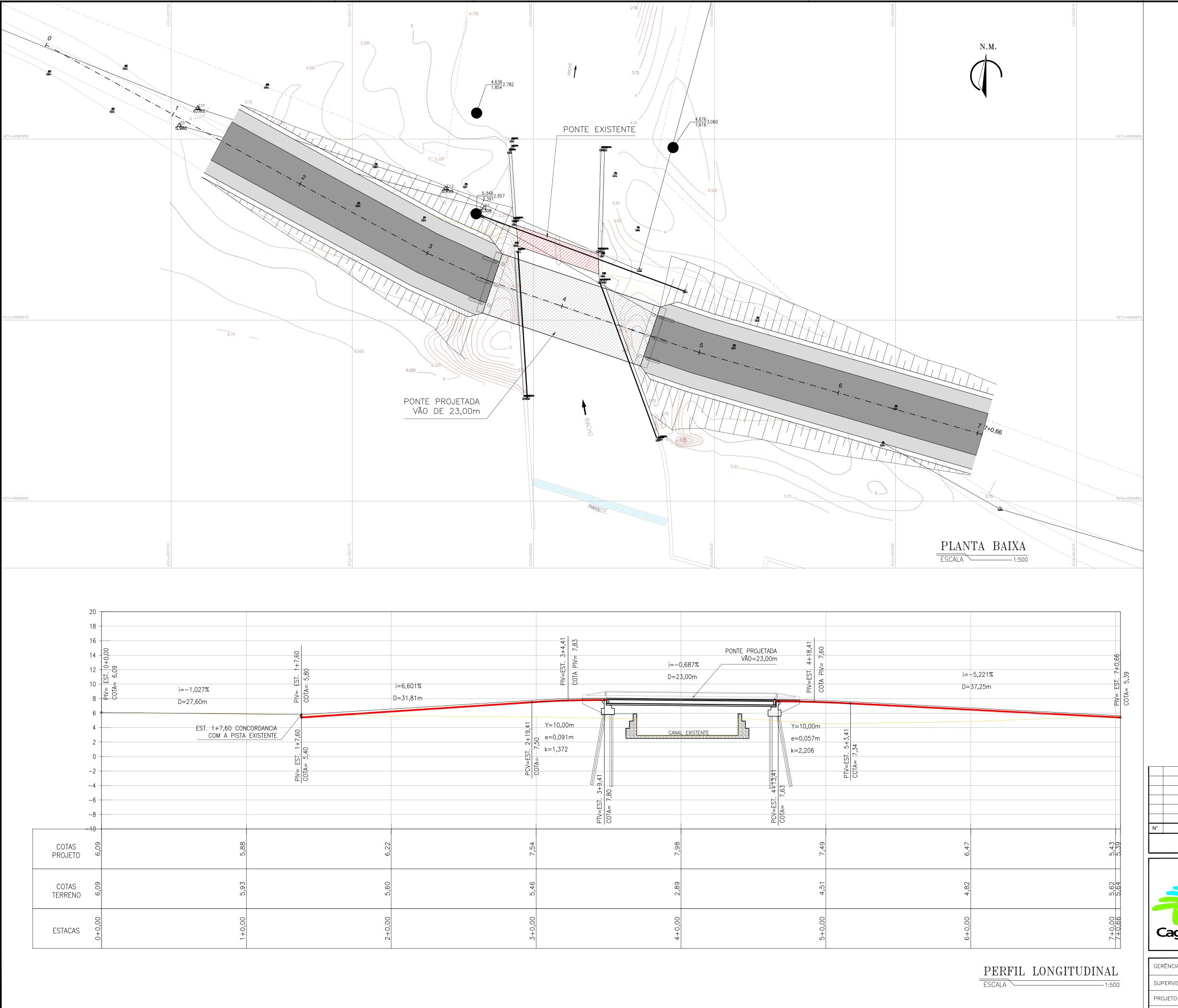
DESENHO PRANCHA Nº

07/07

04/04

PONTE NA ALAMEDA SANTÍSSIMA TRINDADE II ARM. 4/4 - TRANSVERSINAS E GUARDA-CORPOS

L				T
	GERÊNCIA:	ENG. RAUL TIGRE DE ARRUDA LEITÃO		
	COORDENAÇÃO:	ENG. BRUNO CAVALCANTE DE QUEIROZ		
	PROJETO:	ENG. VICTOR G. REIS - RNP 061.269.127-6		
	DESENHO:	S. BARROSO	ESCALA:	INDIC.
	ARQUIVO:	SES Fortaleza - Ponte CEU - R0.dwg	DATA:	DEZ/2019


Pavimentação

PEÇAS GRÁFICAS

Relação de Plantas:

DESENHO:	PRANCHA:	TÍTULO:
01/03	01/02	Planta Baixa e Perfil Longitudinal do Trecho da Estrada a ser Pavimentada – Ponte do Céu
03/03	01/01	Estrada de Acesso e Manutenção da IMA-3 no Centro Espiritual Uirapuru – Planta Iluminada da Via de Acesso ao IMA-3

—·—·— EIXO DA ESTRADA

LEGENDA PERFIL:

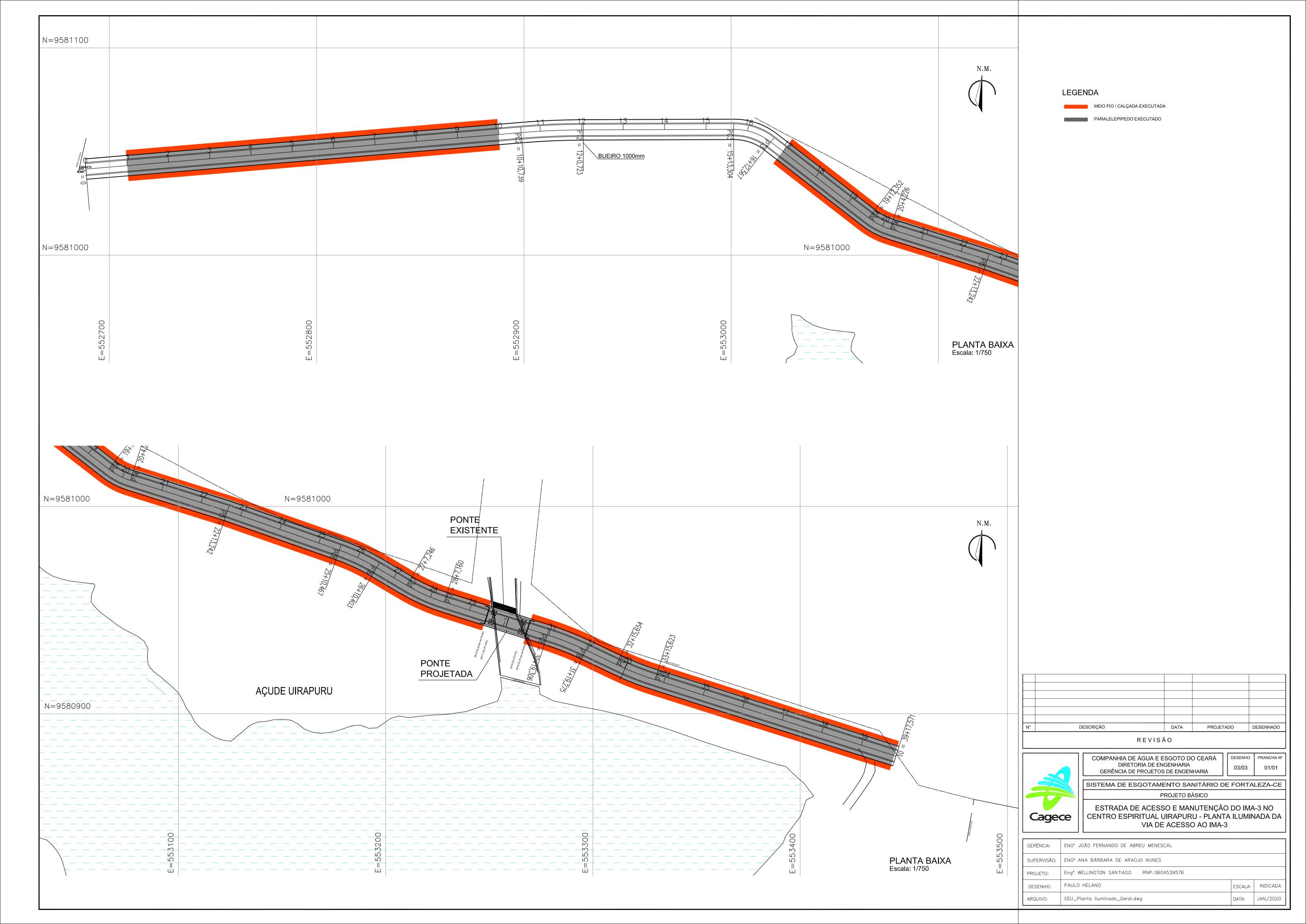
LINHA DO ATERRO COMPACTADO

----- LINHA DO PAVIMENTO (PARALELO)

N°	DESCRIÇÃO	DATA	PROJETADO	DESENHADO	
	REVISÃO				

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA
PROJETO BÁSICO

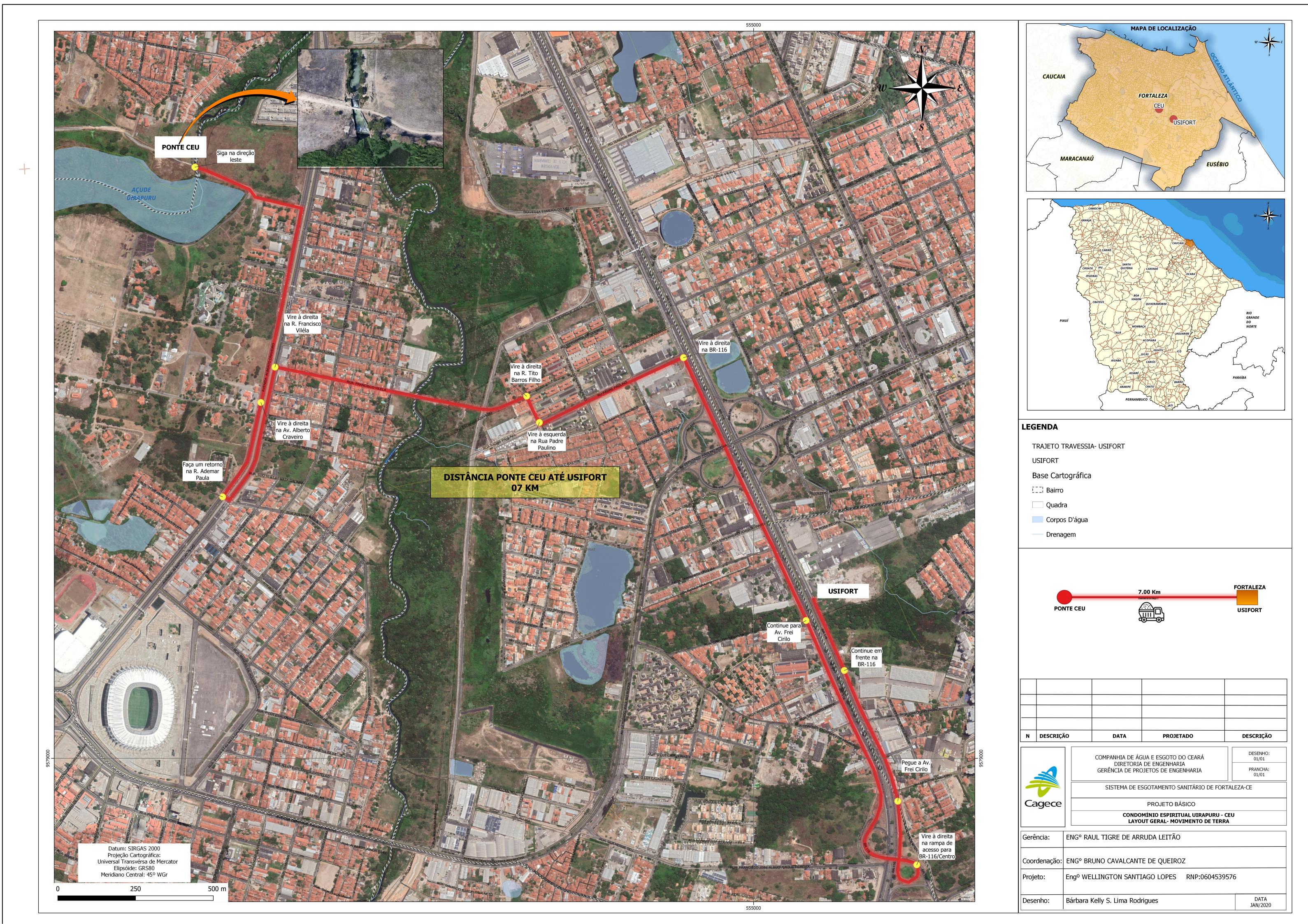

DESENHO PRANCHA Nº

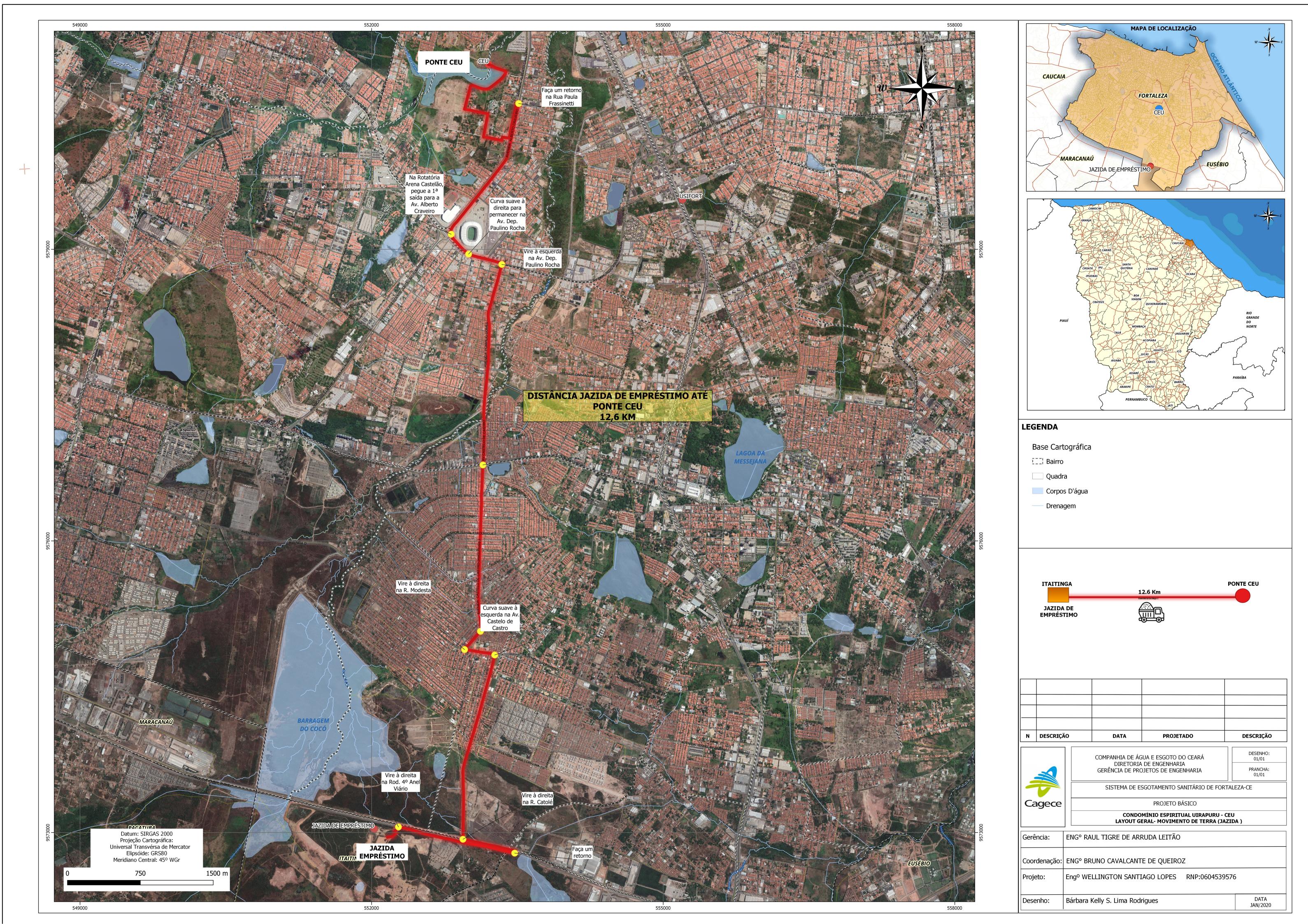
01/02

01/03

PLANTA BAIXA E PERFIL LONGITUDINAL DO TRECHO DA ESTRADA A SER PAVIMENTADA - PONTE DO CEU

GERÊNCIA:	ENGº JOÃO FERNANDO DE ABREU MENESCAL			
SUPERVISÃO:	ENGº ANA BÁRBARA DE ARAÚJO NUNES			
PROJETO:	Eng° WELLINGTON SANTIAGO RNP: 0604539576			
DESENHO:	PAULO HELANO	ESCALA:	INDICADA	
ARQUIVO:	CEU_Planta e Perfil Longitudinal—Trecho Ponte.dwg	DATA:	JAN/2020	


Movimento de Terra



PEÇAS GRÁFICAS

Relação de Plantas:

DESENHO:	PRANCHA:	TÍTULO:
01/01	01/01	Condomínio Espiritual Uirapuru – CEU – Layout Geral – Movimento de Terra
01/01	01/01	Condomínio Espiritual Uirapuru – CEU – Layout Geral – Movimento de Terra (Jazida)

