Companhia de Água e Esgoto do Ceará

DEN - Diretoria de Engenharia GPROJ - Gerência de Projetos de Engenharia

Aquiraz - CE

Adequação do Centro de Treinamento, Demonstração e Desenvolvimento em Reúso Agrícola de Água

VOLUME VIII Automação - Flocoflotador

Cagece - Companhia de Água e Esgoto do Ceará

DEN - Diretoria de Engenharia GPROJ - Gerência de Projetos

EQUIPE TÉCNICA DA GPROJ – Gerência de Projetos

Produto: Centro de Treinamento, Demonstração e Desenvolvimento em Reúso Agrícola de Água – Aquiraz/CE - VOLUME VIII – Automação - Flocoflotador

Gerente de Projetos

Enga. Cailiny Darley de Menezes Medeiros

Coordenação de Projetos Técnicos

Engº. Raul Tigre de Arruda Leitão

Coordenação de Serviços Técnicos de Apoio

Engo. Celso Lira Ximenes Júnior

Engenheiro Eletricista

Engo. Marcos Leno Ferreira Pompeu

Desenhos

Roberto Pinheiro Sampaio

Edição

Janis Joplin Saara Moura Queiroz

Arquivo Técnico

Patrícia Santos Silva

Colaboração

Ana Beatriz Caetano de Oliveira Gleiciane Cavalcante Gomes

SUMÁRIO

MEI	MOR	AL DESCRIT	IVO ELÉTRICO	5
1	ОВ	IETIVO		6
2	DES	CRIÇÃO GEI	RAL DO SISTEMA	6
	2.1	Localização		6
	2.2	EQUIPAMENTOS	S INSTALADOS	6
		2.2.1 Bomb	a-d'água	6
		2.2.2 Raspa	ador	6
		2.2.3 Comp	ressor	7
		2.2.4 Bomb	a de polímero	7
3	COI	ICEPÇÃO GE	ERAL DO PROJETO	7
	3.1	SUPRIMENTO D	E ENERGIA	7
	3.2	DESCRITIVO OF	PERACIONAL	7
4	INS	ΓALAÇÕES E	LÉTRICAS	8
	4.1	ILUMINAÇÃO INT	TERNA	8
	4.2	ATERRAMENTO		8
	4.3	PROTEÇÃO CON	NTRA SURTO DE TENSÃO NA ALIMENTAÇÃO GERAL	8
	4.4	ÎNSTALAÇÃO EM	1 ELETRODUTOS	10
	4.5	CONDUTORES E	ELÉTRICOS	10
	4.6	QUADROS ELÉT	RICOS	11
		4.6.1 Carac	terísticas gerais dos circuitos	11
		4.6.2 Presc	rições sobre os componentes	11
5	ОВ	SERVAÇÕES		16
MEI	MOR	AL DESCRIT	IVO AUTOMAÇÃO	17
6	ОВ	ETIVO		18
7	ESCOPO DO PROJETO DE AUTOMAÇÃO18			18
8	IMPLEMENTAÇÃO DO SISTEMA DE AUTOMAÇÃO19			19
a	ΔR	NIITETIIRA F	OO SISTEMA DE AUTOMAÇÃO	19

10	DESCRIÇÃO GERAL	20			
11	PRINCIPAIS DIRETRIZES OPERACIONAIS	22			
12	DESCRIÇÃO DAS TELAS DA IHM	23			
	12.1 Apresentação	23			
	12.2 MENU PRINCIPAL	23			
	12.3 VISÃO GERAL DO SISTEMA	23			
	12.4 TELA DE HISTÓRICO DE ALARMES	24			
	12.5 TELA DE LOGIN/LOGOUT	25			
	12.6 TELA DE MEDIÇÕES INDIVIDUAIS	25			
	12.7 Tela de Senhas e Cadastros	25			
13	SERVIÇOS DE INSTALAÇÃO	26			
14	CONDIÇÕES GERAIS	27			
15	ATERRAMENTO	27			
16	TESTES	28			
17	GARANTIA	28			
18	ASSISTENCIA E SUPORTE TÉCNICO	29			
19	CRONOGRAMA DE FORNECIMENTO	29			
20	DOCUMENTAÇÃO	30			
21	TREINAMENTO	31			
22	ESPECIFICAÇÃO TÉCNICA DO SISTEMA DE AUTOMAÇÃO	34			
	22.1 PAINEL DA AUTOMAÇÃO3				
	22.2 CONTROLE LÓGICO PROGRAMÁVEL - CLP				
	22.3 FOLHA DE DADOS DOS EQUIPAMENTOS	35			
	22.3.1 DISPOSITIVO DE PROTEÇÃO CONTRA SURTOS	35			
	22.3.2 MINI-DISJUNTORES TERMOMAGNÉTICOS	35			
	22.3.3 CONTROLADOR LÓGICO PROGRAMÁVEL - CLP	35			
	22.3.4 CARTÕES DE EXPANSÃO DO CLP	36			
	22.3.5 FONTE DE ALIMENTAÇÃO	36			
	22.3.6 IHM	37			

	22.3.7 CONECTORES DE PASSAGEM	37
	22.3.8 BORNE FUSÍVEL	38
	22.3.9 CONTATOR	38
	22.3.10 FUSÍVEL CARTUCHO	38
	22.3.11 INVERSOR DE FREQUÊNCIA	39
	22.3.12 RELÉ DE INTERFACE	39
	22.3.13 PROTETOR DE PORTA ANALÓGICA	39
	22.3.14 PAINEL ELÉTRICO	39
	22.3.15 BOTÃO DE COMANDO DE EMERGÊNCIA PARA PAINEL ELÉTRICO	40
	22.3.16 BOTÃO DE COMANDO PLANO PARA PAINEL ELÉTRICO	40
	22.3.17 SINALIZADOR PARA PAINEL ELÉTRICO	41
	22.3.18 RELÉ DE NÍVEL	41
	22.3.19 TOMADAS	41
	22.3.20 VÁLVULA SOLENOIDE DE 1/2"	41
	22.3.21 MEDIDOR DE VAZÃO ELETROMAGNÉTICO C/ CONVERSOR	42
	22.3.22 TRANSMISSOR C/ SENSOR DE NÍVEL DE RADAR	42
	22.3.23 TRANSMISSOR DE PRESSÃO	43
	22.3.24 VÁLVULA COM ATUADOR PROPORCIONAL	43
23	ESPECIFICAÇÃO TÉCNICA DO SISTEMA DE AUTOMAÇÃO	45
24	ART	54
25	PEÇAS GRÁFICAS	57

Memorial Descritivo Elétrico

1 OBJETIVO

Este memorial tem por objetivo complementar os desenhos, fornecendo dados e orientação básica destinadas à elaboração do projeto de Automação da câmara de saturação, utilizada no floco-flotador, do Centro de Treinamento, Demonstração e Desenvolvimento em Reúso Agrícola de Água, em Aquiraz-CE, auxiliando, ainda, na definição dos serviços, dos equipamentos, dos materiais e da norma.

O projeto foi elaborado com base em normas ABNT e em normas das concessionárias de serviço público.

Alertamos que a existência de alterações no dimensionamento ou nas especificações apresentadas neste projeto exonera os autores e os co-autores do projeto de qualquer responsabilidade legal no resultado final da execução da obra.

O projeto contempla Memorial Descritivo, Memorial de Cálculo, Orçamento e Parte Gráfica.

2 DESCRIÇÃO GERAL DO SISTEMA

2.1 Localização

O Centro de Pesquisa de Reúso – CPR, está localizado na Av. José Nicodemos Assunção, s/nº, Aquiraz-CE.

2.2 Equipamentos Instalados

Os equipamentos serão instalados em um contêiner que contém o sistema de automação da câmara de saturação utilizada no floco-flotador. O contêiner terá instalado um Quadro Geral de Baixa Tensão (QGBT), partindo dele proteção e alimentação do painel de automação e iluminação interna.

2.2.1 Bomba-d'água

A bomba d'água será composta por um conjunto motor-bomba 4CV-380V.

2.2.2 Raspador

O raspador será composto por um motor trifásico de 1CV-380V acoplado em um redutor.

2.2.3 Compressor

O compressor será composto por um motor trifásico de 1CV-380V.

2.2.4 Bomba de polímero

A bomba de polímero será composta por um motor-bomba 1CV-380V.

3 CONCEPÇÃO GERAL DO PROJETO

Os cálculos da carga instalada da estação de elevatória bem como os memoriais de cálculo encontram-se em anexo.

Este projeto foi desenvolvido com base nos dados informados no projeto hidráulico, atende às Normas Brasileiras (ABNT), às Normas da COELCE (Companhia Energética do Ceará) e às Normas da CAGECE (TR-00 – Termo de Referência para Projetos Elétricos, TR-02 - Termo de Referência para Aquisição de Painéis Elétricos com Soft Starter e NR-18 – Máquinas e Equipamentos.

3.1 Suprimento de Energia

Potência total instalada do sistema: 7.6 kW.

O sistema elétrico do Contêiner terá suprimento proveniente da rede secundária da concessionária de energia local – COELCE, através de tomada Steck, instalada na área externa do contêiner.

3.2 Descritivo Operacional

A tensão de alimentação dos motores será trifásica em 380VCA e será monitorada através de relé de seqüência e falta de fase.

Os motores instalados com potências maiores do que 5CV serão acionados por Painel de Partida suave, de acordo com a TR-02, disponível no site: https://www.cagece.com.br/termos-de-referencia.

O painel de acionamento dos motores será instalado dentro de um contêiner.

Acionamento no modo Automático: os conjuntos motor-bomba deverão funcionar de acordo como foi especificado no descritivo do projeto de automação. Os acionamentos dos motores terão proteção contra funcionamento a vazio, através de relé de nível instalado no tanque flotador.

4 INSTALAÇÕES ELÉTRICAS

4.1 Iluminação interna

A iluminação interna será feita através de luminária blindada de sobrepor para uma lâmpada fluorescente compacta, potência de 20W. Possui corpo, defletor, grade de proteção ou aro em alumínio silício, acabamento epóxi na cor cinza, resistente a impactos, com aplicação em locais cuja atmosfera contenha umidade, gazes e pó não inflamáveis, Grau de proteção IP54.

4.2 Aterramento

O contêiner deverá ter seis conectores de aterramento, distribuídos uniformemente em torno do mesmo. Os conectores deverão ser conectados em malha de aterramento existente.

Todas as partes metálicas, painéis elétricos e partes metálicas internas à edificação (Portas, Talhas/Monovias, Quadro Geral de Baixa Tensão (QGBT), Quadro de Distribuição de Luz e Força (QDLF), CCM, Quadro do Banco de Capacitores e Motores) deverão ter suas carcaças aterradas à malha de aterramento geral.

As malhas de aterramento deverão ser montadas através de cabos de cobre nu de 50 mm², enterrados a, no mínimo, 50 cm de profundidade, hastes de terra de 3/8" x 2,40 m e conexões exotérmicas.

A resistência de terra máxima permitida para as malhas a serem construídas nos locais de instalação do contêiner deverá ser de 10 ohms.

As medições de resistência de terra deverão ser realizadas antes da interligação das malhas.

A profundidade dos cabos das malhas de aterramento e interligações deverá ser de no mínimo 50 cm.

Se não for alcançado, para cada malha de aterramento, o valor máximo de 10 ohms, a malha deverá ser ampliada, ou pode-se aplicar betonita ao longo das hastes e dos cabos.

4.3 Proteção contra surto de tensão na alimentação geral

O suprimento de energia do QGBT deverá ter as 3 (três) fases e o neutro protegidos com protetores de surto de classes I / II, já associados com um dispositivo de seccionamento interno.

De acordo com a NBR 5410, os DPSs, destinados à proteção contra sobretensões, provocadas por descargas atmosféricas diretas, deverão ter a seção nominal do condutor

das ligações DPS-PE de, no mínimo, 16 mm² em cobre. As distâncias máximas destas ligações estão representadas na Figura 1.

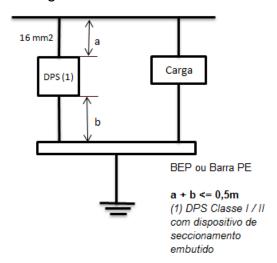


Figura 1 - Condutores de conexão DPS

Deverão ser consideradas as especificações da Tabela 1 para a escolha do protetor de surto.

Tabela 1 - Especificação Técnica DPS Classe I/II

ITEM	CARACTERÍSTICAS TÉCNICAS	ESPECIFICAÇÃO
1	Tipo de Centelhador	Varistor
2	Máxima Tensão de Operação Contínua (U _C)	>=235 V (1,1 x U ₀) (1)(2)
3	Corrente Nominal de Impulso	50 kA
4	Corrente Nominal de Descarga	20 kA
5	Corrente Máxima de Descarga	40 kA
6	Nível de Proteção (Up)	<= 2,5 kV
7	Tempo de Resposta	<= 100 ns
8	Dispositivo de proteção embutido	Sim
ITEM	CARACTERÍSTICAS GERAIS	ESPECIFICAÇÃO
1	Temperatura de Operação	-40 a 85°C
2	Grau de Proteção	IP 20

⁽¹⁾ Os valores adequados de U_{C} podem ser significativamente superiores aos valores mínimos da tabela.

(2) U_0 é a tensão fase-neutro.

4.4 Instalação em eletrodutos

Não deve ser utilizado eletroduto de bitola inferior a 3/4".

Os eletrodutos devem ser em PVC rígido rosqueável, antichama, classe B. Devem ter superfície interna lisa e não apresentar farpas ou rugosidades, que possam danificar os cabos durante o lançamento ou redundar em alto coeficiente de atrito.

Os eletrodutos devem ser cortados perpendicularmente ao seu eixo. Nas novas roscas, deve-se retirar todas as rebarbas deixadas nas operações de corte e de abertura.

Os eletrodutos expostos (instalação aparente) devem ser adequadamente fixados, por intermédio de perfilados e de braçadeiras, de modo a constituírem um sistema de boa aparência e de firmeza, suficiente para suportar o peso dos condutores e dos esforços do lançamento.

A emenda de eletrodutos, ou sua conexão à caixas de passagens, deve ser feita de tal forma que garanta perfeita continuidade elétrica, resistência elétrica equivalente a da tubulação, vedação perfeita, continuidade e regularidade da superfície interna e externa.

Os condutores somente devem ser lançados depois de estar completamente terminada a rede de eletrodutos, assim como concluídos todos os serviços que os possam danificar. Os eletrodutos rígidos embutidos em concreto armado devem ser colocados de modo a evitar sua deformação na concretagem, devendo ainda ser fechadas as caixas e bocas destes eletrodutos, com peças apropriadas para impedir a entrada de argamassa ou de nata de concreto durante a concretagem. Os eletrodutos rígidos embutidos em concreto devem ter caimento suficiente para que não acumule líquido no seu interior.

As caixas de passagem devem ser colocadas em todos os pontos de entrada ou de saída dos condutores nas tubulações, exceto nos pontos de transição ou passagem de linha aberta para linha em eletroduto, os quais nestes casos devem ser arrematados com buchas adequadas.

4.5 Condutores Elétricos

Os condutores elétricos utilizados na distribuição de energia em baixa tensão dos quadros elétricos e dos circuitos de iluminação deverão ser em cobre, com isolação em PVC-70°C e nível de isolamento de 1kV.

Todos os cabos devem ser amarrados e ser identificados com fitas e com etiquetas apropriadas, conforme numeração de projeto.

Nos trechos verticais externos das instalações, os condutores devem ser convenientemente apoiados e amarrados nas extremidades, superior e inferior das instalações, por suportes isolantes, com resistência mecânica adequada ao peso de

trabalho, e que não danifiquem o isolamento dos mesmos.

Os condutores devem formar trechos contínuos de caixa a caixa. As emendas e as derivações terão que ficar colocadas dentro das caixas. Não deverão ser lançados condutores emendados em eletroduto, ou cujo isolamento tenha sido danificado e recomposto por fita isolante ou por outro material.

Os cabos não devem ser emendados quando da sua instalação. Assim, os circuitos serão executados em um só lance de condutores. Para os casos em que venha a se fazer necessária a emenda dos cabos, devem ser utilizados terminais de compressão.

Para o dimensionamento dos condutores, utilizamos os critérios de capacidade de corrente e queda de tensão, onde adotamos um valor máximo de 2 % nos circuitos terminais.

Para o cálculo da corrente de projeto, consideramos uma temperatura ambiente de 35°C e um fator de segurança de 20 % acima da corrente nominal.

4.6 Quadros elétricos

O quadro para comando dos motores (CCM) deve obedecer à norma da CAGECE, TR-01 e TR-02.

O Quadro Geral de Baixa Tensão (QGBT) será do tipo sobrepor.

Todos os disjuntores deverão ser tropicalizados.

4.6.1 Características gerais dos circuitos

Todos os circuitos deverão ser protegidos através de disjuntores. Além disso, deverão ser identificados com plaquetas em acrílico, fundo preto e letras brancas.

4.6.2 Prescrições sobre os componentes

Todos os componentes devem obedecer às normas ABNT, as quais suas características construtivas e funcionais estejam afetadas.

a) Disjuntores

Para proteção geral dos quadros, deverão ser utilizados disjuntores tripolares termomagnéticos, com corrente nominal e com capacidade mínima de interrupção, conforme indicada em desenho, frequência nominal 60 Hz e tensão nominal 380 V.

Para os circuitos terminais, serão utilizados disjuntores termomagnéticos, com corrente nominal indicada em desenho, com capacidade mínima de interrupção, conforme

indicada em desenho, frequência nominal 60 Hz e tensão de operação nominal mínima de 220 V.

Os disjuntores que compõem os painéis de distribuição deverão possuir as características a seguir relacionadas. Para detalhes específicos, referentes à capacidade de ruptura e a eventuais ajustes de seletividade, deverão ser verificadas as indicações constantes nos diagramas unifilares que compõem o projeto.

- Número de pólos: conforme diagrama unifilar.
- Corrente Nominal: conforme diagrama unifilar.
- Freqüência: 50/60 Hz.

Os disjuntores deverão ser tropicalizados.

b) <u>Barramentos</u>

Os barramentos deverão ser confeccionados em cobre chato. Deverão ser dimensionados de acordo com as correntes nominais indicadas nos diagramas, e na falta destes, de acordo com a corrente nominal dos componentes/equipamentos os quais forem alimentar.

As derivações dos barramentos, quando houver, deverão possuir capacidade de corrente suficiente para atender a demanda prevista para todos os equipamentos por ela alimentados e as previsões de aumentos futuros.

As ligações para as unidades de chaveamento deverão ser executadas, preferencialmente, por barras de cobre ou por cabos flexíveis, quando instaladas na porta do quadro.

As barras deverão ser estanhadas nas junções e nas conexões. Parafusos, porcas e arruelas, utilizados para conexões elétricas, deverão ser de aço bicromatizado.

Os barramentos deverão ser fixados por isoladores em epóxi, espaçados adequadamente para resistir sem deformação aos esforços eletrodinâmicos e térmicos das correntes de curto a que serão sujeitos.

O quadro deverá possuir os seguintes barramentos montados nas cores:

- Neutro isolado azul claro;
- Terra verde:
- Neutro aterrado (Pen) verde com veia amarela.

Os barramentos terão a quantidade de parafusos conforme o número de circuitos admissíveis. Toda parte metálica não condutora da estrutura do quadro, como portas, chassis de equipamentos etc., deverão ser conectados à barra de terra.

c) <u>Características construtivas quadros elétricos</u>

O quadro deverá ser confeccionado em chapa de aço carbono, selecionada, absolutamente livre de empenos, de enrugamentos, de aspereza e de sinais de corrosão, com espessura mínima 14MSG, executado de uma só peça, sem soldagem na parte traseira, em um único módulo.

A porta do quadro deverá ser executada em chapa de mesma bitola definida para a caixa. As dobradiças serão internas. A porta deverá, ainda, possuir juntas de vedação, de forma a garantir nível de proteção IP-23/42 e fecho tipo lingüeta, acionado por chave tipo fenda ou triangular.

O quadro deverá possuir placa de montagem tipo removível, executada em chapa de aço com espessura mínima 12MSG.

O quadro deverá, ainda, possuir dispositivos que permitam sua fixação à parede ou base soleira para apoio e para fixação no piso e possuir também porta desenhos.

Na parte inferior e superior, deverão ser previstos flanges removíveis para permitir que sejam feitas conexões de eletrodutos, de leitos ou de eletrocalhas. A porta deverá ser provida de aberturas para ventilação.

Os painéis instalados ao tempo deverão ter grau de proteção conforme indicado em projeto.

Todas as partes metálicas, caixa, porta, placa de montagem, deverão receber tratamento anticorrosivo. Este tratamento deverá constituir no mínimo de limpeza, de desengraxamento e de aplicação de duas demãos de acabamento em tinta epóxi.

As cores de acabamento serão:

- Parte interna e externa cinza claro:
- Placa de montagem laranja.

Todas as peças de pequeno porte, como parafusos, porcas, arruelas, deverão ser zincadas ou bicromatizadas, não sendo aceito o uso de parafusos auto atarraxantes.

Os quadros serão para embutir.

d) <u>Porta projeto</u>

Possuir porta projeto pela parte interna da porta, em tamanho suficiente para guarda dos desenhos e das especificações deste painel.

e) <u>Dispositivos DR</u>

Os dispositivos DR que compõem os painéis de distribuição deverão possuir as características relacionadas abaixo. Para detalhes específicos, referentes à capacidade de ruptura e a eventuais ajustes de seletividade, deverão ser verificadas as indicações constantes nos diagramas unifilares que compõe o projeto.

Número de pólos: conforme diagrama unifilar.

· Corrente Nominal: conforme diagrama unifilar.

Sensibilidade: 30 mA.

Freqüência: 50/60 Hz.

Tensão Máxima de Emprego: 400 VCA.

f) <u>Fiação</u>

Os cabos no interior do quadro não poderão ficar suspensos livremente, devendo ser previsto algum tipo de amarração com abraçadeira plástica.

Não será permitida a concentração de mais de dois condutores no mesmo terminal do equipamento ou bloco terminal.

Não será aceito nenhum tipo de emenda nos condutores internos do quadro.

Todas as conexões "Condutor-Equipamento" deverão ser feitas por meio de terminais de compressão com luva isolante.

Todas as extremidades de fios e de cabos condutores devem ser identificadas por meio de anilhas de nylon ou processo equivalente, contendo número ou letras iguais aos dos terminais a que se destinam.

g) Barreiras

Conforme o item 7.6.2.3 da NBR IEC 60439-1: "Devem ser projetadas barreiras para dispositivos de manobra manuais, de forma que os arcos de interrupção não apresentem perigo para o operador".

h) <u>Prescrições sobre proteção e segurança</u>

O sistema de proteção aos equipamentos e a outros dispositivos de comando e de supervisão deve ser capaz de torná-los à prova de acidentes.

A distribuição de barramentos deve ser feita de modo a reduzir, ao mínimo possível,

a possibilidade de curto-circuito provocado involuntariamente quando em manutenção.

As partes pontiagudas de peças mecânicas que ficarem expostas devem ser convenientemente protegidas contra riscos de acidentes pessoais.

De forma geral, qualquer componente que possa causar danos (choques elétricos, ferimentos, queimaduras) às pessoas deve ser convenientemente protegido, ou pelo menos, dispor de avisos bem incisivos e em posição estratégica, como prevenção contra contatos acidentais.

i) <u>Aterramento do quadro</u>

O aterramento do quadro deve atender as seguintes características básicas:

- O aterramento deve ser obtido através de uma barra fixada na parte inferior da estrutura do quadro, por meio de parafusos cadmiados ou zincados;
- A barra de terra deve ser em cobre estanhado na região dos furos e possuir uma quantidade suficiente de furos para atender as saídas, estes devem ser compatíveis com as ampacidades dos terminais dos circuitos de saídas e não devendo ser pintada a área de contato dos terminais;
- A barra de cobre deve ser fornecida com conectores/terminais próprios para cabos de cobre nu, tipo compressão, para permitir a ligação dos cabos da malha de terra.

Os quadros devem possuir barra de aterramento equipotencial (PE) e barra de neutro (N).

i) Aterramento do contêiner

O aterramento do container deve atender as seguintes características básicas:

- O aterramento deverá ser obtido através de conexões entre conectores fixados no contêiner e hastes de terra existentes no local, por meio de parafusos cadmiados ou zincados;
- O contêiner deverá possuir externamente 4 barras de conexão ao terra que deverá ser em cobre estanhado na região dos furos e possuir uma quantidade suficiente de furos para atender as saídas, estes devem ser compatíveis com as ampacidades dos terminais dos circuitos de saídas e não devendo ser pintada a área de contato dos terminais.

k) <u>Inspeções e ensaios</u>

Os ensaios e as verificações abaixo deverão ser feitos para todos os quadros:

- Verificação da fiação.
- Verificar a continuidade dos diversos condutores usados na interligação dos equipamentos do cubículo e conferir a correspondência entre os diversos terminais e os condutores nele ligados.
- Verificação do aterramento.
- Deverá ser verificada a eficiência do aterramento dos diversos instrumentos e similares.
- Ensaio de seqüência de operação.
- Os painéis deverão ser ensaiados de acordo com a ANSI C. 37.20, de maneira a assegurar que os dispositivos que devam executar uma dada seqüência funcionem adequadamente e na ordem pretendida.
- Ensaio de resistência de isolação.
- Este ensaio deverá ser feito com Ohmímetro (tipo MEGGER) com uma saída de tensão, em corrente contínua. Todos os circuitos não conectados ao terra deverão ser interligados.
- Ensaios de operação mecânica.
- Ensaios mecânicos deverão ser feitos para estabelecer o funcionamento satisfatório das partes mecânicas e a intercambialidade entre unidades removíveis.
- Verificação operacional de todo o equipamento.

Todos os equipamentos de controle, de sinalização, de medição, de supervisão, de intertravamento e de registro deverão ser verificados para confirmar plena concordância com os dados de projeto.

Ensaios de acordo com a última revisão das normas técnicas da COELCE.

5 OBSERVAÇÕES

O projeto deverá ser executado conforme:

- As exigências do projeto hidráulico;
- Última revisão da ABNT;
- Última revisão dos termos de referência da CAGECE;
- Última revisão das normas técnicas da COELCE.

Memorial Descritivo de Automação

6 OBJETIVO

Este memorial descritivo tem como objetivo descrever a solução para implementação da AUTOMAÇÃO NO SISTEMA DE SATURAÇÃO no piloto da ETRG, bem como suas interfaces com os equipamentos de campo que fazem parte direta ou indiretamente do sistema.

A automação proposta é uma solução baseada em um Sistema Digital de Controle Distribuído (SDCD), que é bastante adequada para processos geograficamente distribuídos. O SDCD será gerenciado por um programa aplicativo a ser instalado em uma interface Homem-Máquina (IHM) e terá algumas funções de um software tipo SCADA (Supervisory control and data acquisition). Este aplicativo permitirá ao operador navegar de forma interativa através de telas representativas do layout geral do sistema.

7 ESCOPO DO PROJETO DE AUTOMAÇÃO

O SISTEMA de AUTOMAÇÃO tem como escopo atender às necessidades de monitoramento, de controle e de operação do tanque de saturação da Estação de Tratamento de Rejeitos Gerados Piloto do Centro de Treinamento, Demonstração e Desenvolvimento em Reúso Agrícola de Água em Aquiraz-CE.

Serão monitoradas e registradas as vazões instantâneas e acumuladas (dia e mês) de entrada e de saída de água de recirculação. A automação contribuirá para garantir a perfeita operação do sistema e para prolongar a vida útil dos equipamentos e das instalações, permitindo uma programação adequada da operação e da manutenção de todas as partes que compõem o sistema.

Todas as soluções apresentadas nesse documento foram elaboradas baseadas nos seguintes princípios:

- Utilização de tecnologias atuais e adequadas ao tipo de aplicação;
- Segurança e a operacionalidade do sistema;
- Adequação às instalações eventualmente existentes;
- Adequação às necessidades da aplicação;
- Facilidades para ampliações futuras;
- Relação custo x benefício dos dispositivos e equipamentos aplicados na implementação e na operação do sistema.

8 IMPLEMENTAÇÃO DO SISTEMA DE AUTOMAÇÃO

A empresa responsável pela implementação do sistema de automação terá como escopo mínimo os seguintes itens:

- Elaboração do projeto executivo;
- "as built" do sistema de automação atendendo todas as especificações deste projeto;
- Fornecimento de todos os sistemas operacionais, programa SCADA, aplicativos de baixo e alto nível que atendam ao projeto, assim como suas respectivas licenças de uso;
- Fornecimento de todos os equipamentos que atendam as especificações deste projeto;
- Serviços de engenharia de que atendam a solução proposta;
- Modificações para permitir o controle e o monitoramento no quadros de comando do compressor, câmara de saturação e bomba de recirculação;
- Teste em fábrica de todos os equipamentos;
- Fornecimento de toda a documentação dos equipamentos e programas fornecidos, incluindo, os códigos fontes e licenças dos programas, de forma a permitir a manutenção e possibilitar novos desenvolvimentos por parte da administração do sistema;
- Fornecimentos de equipamentos e de peças sobressalentes;
- Treinamentos de manutenção e de operação relativos aos principais equipamentos e programas instalados.

9 ARQUITETURA DO SISTEMA DE AUTOMAÇÃO

O Sistema de Automação terá uma arquitetura baseada em um Sistema Digital de Controle Distribuído (SDCD).

O monitoramento do sistema será através de uma Interface Homem-Máquina (IHM), localizada na sala das câmaras de saturação, para configuração e para garantir a disponibilidade dos dados para as atividades de rastreamento de eventos e falhas, manutenção e planejamento.

A IHM fornecerá, através do seu programa aplicativo de supervisão, uma visão global de todo o sistema. O aplicativo permitirá através de suas telas, uma interface amigável dos operadores o sistema, possibilitando a aquisição de dados, de históricos de alarmes e de eventos das condições de operação.

10 DESCRIÇÃO GERAL

O sistema é constituído por 01 (uma) câmara de saturação, que só deve ser operada se o nível do reservatório existente permitir. A câmara será alimentada a partir de uma bomba que retiram água do reservatório existente e por um compressor de ar com controle de nível e pressão, respectivamente. O controle de nível e de pressão da câmara de saturação será realizado pelo sistema de automação.

A câmara terá instalado um transmissor de nível do tipo radar por onda guiada que informará o nível exato da água. O controlador lógico programável (CLP) comandará o inversor de freqüência da bomba d'água, variando sua vazão, de forma a manter o nível em um valor programável de Setpoint, aproximadamente 50% do nível total. A sonda do radar possuirá uma haste de comprimento que atenda a aplicação e será instalada a partir do topo da câmara.

A câmara também conterá instalado um transmissor para medir a pressão interna da câmara e o controlador lógico programável comandará para que esta pressão permaneça em um valor programável de Setpoint, aproximadamente 5 kg/cm², controle feito através de uma válvula com atuador elétrico na tubulação de ar comprimido.

Medidor de vazão, tipo eletromagnético, a ser instalado na tubulação de saída da água saturada.

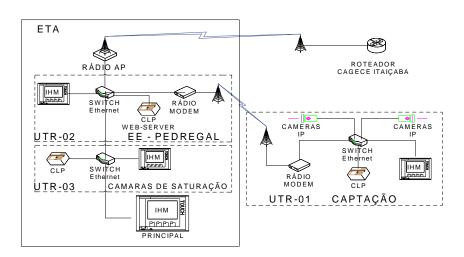
No sistema da câmara de saturação, ainda está instalada a seguinte válvula conforme descrito a seguir:

- Válvula de alívio de segurança Trata-se de uma proteção mecânica caso a pressão dentro da câmara exceda a pressão máxima aceitável;
- Válvula de purga manual Utilizada para manutenção e para esvaziamento da câmara;
- Válvula de retenção para tubulação de ar comprimido de cada compressor Evita o retorno de água para o compressor em caso de falha do sistema;
- Válvula de retenção para tubulação de saída de água saturada de cada câmara - Evita o retorno de água para dentro da câmara quando uma estiver inoperante e a outra em funcionamento;
- Válvula com atuador proporcional a ser instalada na tubulação de saída da água saturada;
- Válvula com atuador elétrico proporcional na saída de ar comprimido.

Filtro secador de ar (com carvão ativado, dreno automático e manômetro) na tubulação de ar comprimido.

O CLP será responsável pelo monitoramento das seguintes grandezas:

- Nível da câmara de saturação (LIT-1);
- Vazão de saída da câmara de saturação (FIT-01);
- Vazão de entrada de água no tanque de flotação (FIT-02);
- Percentual de abertura da válvula controle de ar comprimido (FV-01);
- Percentual de abertura da válvula controle de saída de água saturada (FV-02);
- Status de ligado e desligado das bombas d'água;
- Status de ligado e desligado dos compressores;
- Status de defeito das bombas d'água;
- Status de defeito dos compressores;
- Pressão da câmara (PIT-1);
- Informações das grandezas dos Inversores (sinal serial RS 485 protocolo MODBUS-RTU).


Os seguintes comandos serão implementados:

- Acionamento da bomba da Câmara de Saturação;
- Controle de rotação da bomba da Câmara de Saturação;
- Seleção para acionamento do compressor;
- Atuação na válvula proporcional da tubulação de ar comprimido;
- Sinalizador acústico para falha/alarme no sistema;
- Acionamento da válvula proporcional de saída da câmara de saturação;

O acionamento do motor da bomba d'água deverá ser realizado por conversor de freqüência e conforme o nível de água da câmara de saturação selecionada. Este sistema, além do modo de funcionamento automático, permitirá o acionamento manual dos atuadores e indicará as grandezas medidas na IHM (Interface Homem máquina), instalada na porta do painel do controlador. Esta IHM será do tipo Touch Screen de 10" colorido e permitirá uma visualização e o reconhecimento de alarmes e a alteração de parâmetros operacionais.

O painel de acionamento do compressor deverá ser modificado para permitir o comando remoto através do sistema de automação da câmara de saturação.

11 PRINCIPAIS DIRETRIZES OPERACIONAIS

A câmara de Saturação será controlada pelo Painel de automação. Este Painel controlará também o compressor.

O nível da câmara deverá ser mantido em um valor de setpoint, algo em torno de 50% do máximo, ajustado através de um controle PID atuando na freqüência do inversor que tiver em operação e conseqüentemente na vazão da bomba. A câmara que entrará em funcionamento será selecionada via IHM, após confirmação de manobras manuais de registros. Com esta seleção de câmara, apenas os sensores associados a ela deverão ser considerados para que haja o controle automático do sistema.

A pressão da câmara deverá ser mantida em uma valor de setpoint programável, aproximadamente 5 kgf/cm², controlada através de uma válvula proporcional instalada na linha de ar comprimido. O compressor funcionará de forma autônoma, ou seja, através de seu pressostato.

A vazão de saída da câmara (FIT-01) deverá ser mantida em um valor percentual em relação à vazão de entrada do tanque de flotação (FIT-02), controlada pelo programa do CLP por meio de controle PID atuando no acionamento de uma válvula com atuador proporcional a ser instalada na tubulação de saída da água saturada. A vazão de saída

deverá ser mantida em um valor proporcional à vazão de entrada do tanque de flotação, aproximadamente 10 % (ajustável através da IHM).

12 DESCRIÇÃO DAS TELAS DA IHM

O Programa aplicativo da IHM será composto por telas que fará a função de interface homem-máquina, indispensáveis à operação e gerenciamento do sistema. Esta IHM armazenará os históricos e os alarmes do sistema, por um tempo mínimo de três meses e deverá permitir que estes dados sejam extraídos em forma de planilha, como forma de backup do sistema.

As seguintes telas deverão fazer parte do escopo de fornecimento:

- Entrada do sistema Apresentação;
- · Menu principal;
- Visão geral do sistema;
- Tela de alarmes;
- Menu de relatórios;
- Diagnóstico de falhas;
- Histórico de alarmes e eventos;
- Telas de login /logout;
- Tela cadastro e troca de senha.

OBS.:A IHM deverá ser fornecida com software de programação e licença de uso.

12.1 Apresentação

A tela de apresentação mostrará uma foto (por exemplo) do sistema e uma solicitação de nome do usuário e respectiva senha para permitir a operação do sistema.

12.2 Menu Principal

Esta tela fará a chamada dos nos seguintes itens/telas:

- 1. Visão geral do sistema;
- 2. Histórico de Alarmes;
- 3. Saída do sistema.

12.3 Visão Geral do Sistema

Esta tela mostrará uma visão de todo o Sistema de automação, indicando, através de animações e bargraphs, os valores de nível do tanque de flotação, nível da câmara de saturação, vazão e pressão e o status de operação das bombas. Assim como permitirá a

configuração dos setpoints de nível, de pressão, de vazão, e o modo de operação das bombas.

Além das telas principais apresentadas, deverão ser elaboradas as seguintes telas secundárias:

- Tela de visualização da Estação de bombeamento;
- Tela de visualização do tanque de flotação e câmara de saturação.

A seguir serão apresentadas informações gerais do sistema como uma referência básica dos relatórios a serem propostos:

- Nível de reservatório: referências de escala, limites de alarme, volume total, etc.;
- Vazão: médias horária e diária, totalizações do volume horário, diário e mensal, etc.;
- Pressão: referências de escala, limites de alarme;
- Motor-bomba: estado de operação, time-out para comando, alarmes de estado, acúmulo de tempo de funcionamento (horímetro virtual), etc.

Estas telas têm como função permitir ao operador supervisionar e operar. Deve basear-se no P&I para a confecção desta tela. Deverão apresentar o gráfico do processo incluindo a sinalização de todos os equipamentos. Deverão também apresentar o valor de todas as variáveis que estão sendo medidas, tais como, vazões, níveis, etc., e todas as variáveis que estão sendo calculado, tais como, volume de água nos reservatórios, volume de água recalcado, etc.

As seguintes operações estarão disponíveis aos operadores através desta tela:

- · Ajuste dos níveis operacionais;
- Partir e parar equipamentos, quando em operação manual remoto;
- Abrir e fechar válvulas, quando em operação manual;
- Ajustar set-points, saída, local/remoto, etc., dos equipamentos;
- Determinar o rodízio para operação dos equipamentos.

12.4 Tela de Histórico de Alarmes

A tela de histórico de alarmes possibilitará o resgate dos alarmes ocorridos a partir da data corrente até uma determinada data. Os conteúdos desta tela também serão configuráveis, com a possibilidade de separação dos alarmes por classes, categorias ou chaves de seleção. Apresentará recursos para paginação, seleção e eliminação de alarmes, direcionamento para impressora ou arguivo.

Permite a observação de mensagens de alarmes ativos referentes às falhas ocorridas no processo, com respectivas datas e horários, assim como a observação de mensagens de falhas solucionadas.

12.5 Tela de Login/Logout

Esta tela será acessada por um botão localizado na Tela de Menu Principal, e deverão ter os campos para o usuário se "logar" no sistema (nome do usuário, senha) e o botão logout.

Logo que o usuário "logar" aparecerá uma mensagem de "Usuário (nome do usuário) logado".

Quando o usuário clicar em logout, imediatamente irá para a tela de Entrada do Sistema e ficará registrado na Tela de Eventos.

12.6 Tela de Medições Individuais

É um conjunto de telas onde o operador pode visualizar todas as variáveis analógicas. A primeira tela é a das medições on-line, e conterá os seguintes campos: data (dia/mês/ano) e hora (hora/minuto/segundo).

A segunda tela é a tela das médias horárias conterá data (dia/mês/ano) e hora (hora). A terceira e última tela é a dos valores das medições diárias devem conter apenas a data (dia/mês/ano).

12.7 Tela de Senhas e Cadastros

Permite que sejam cadastrados todos os usuários do sistema e suas respectivas senhas.

É a tela em que o supervisor do sistema faz o gerenciamento das senhas dos usuários, dando restrições de acesso a determinadas telas para os usuários do sistema.

As telas de ajuste de set-points de alarmes das variáveis analógicas e o botão confirmam para ajuste dos parâmetros dos controladores devem ter acesso restrito aos supervisores (estas telas estão propostas neste documento).

Serão previstos ao Sistema quatro níveis de programação de acesso. Os níveis de acesso controlarão quais parâmetros podem ser modificados nas telas de operação e quais os módulos do software supervisório e do sistema operacional podem ser ativados.

A Troca de Senha será acessada através da Tela de Menu Principal e permite somente ao usuário "logado" realizar a troca de sua senha. Deve conter os seguintes campos e botões:

Senha antiga;

- Senha nova:
- Confirma senha;
- Botão "Confirma";
- Botão "cancela".

Logo que o usuário clicar no botão "Confirma" para trocar a senha, deve aparecer uma mensagem de "Senha trocada com sucesso".

13 SERVIÇOS DE INSTALAÇÃO

A instalação dos equipamentos especificados faz parte do escopo de fornecimento. O escopo de fornecimento em regime de empreitada por solução técnica e preço global engloba e não se limita aos seguintes serviços:

- Reuniões Técnicas e Comerciais com a equipe da CAGECE;
- Lançamento de cabos de controle e de alimentação elétrica incluindo os seguintes serviços: identificação, fixação e ligação com todos os acessórios de instalação, tais como: terminais, anilhas de identificação, abraçadeiras para chicote, prensa cabos, etc.
- Instalação, montagem, modificação, inspeção e condicionamento de painéis incluindo suas interligações elétricas com os cabos de alimentação e sinais de campo;
- Montagem, instalação, condicionamento, teste e interligação de todos os instrumentos com emissão de certificados de calibração;
- Especificação técnica hardware e software dos itens que deverão compor a solução ofertada;
- Elaboração do projeto executivo e as-built das instalações com desenhos de montagem e fabricação dos equipamentos, devendo seus documentos ser revisados conforme a necessidade;
- Desenvolvimento Software Aplicativo para atendimento das condições estabelecidas nas Diretrizes operacionais;
- Desenvolvimento programa aplicativo para a IHM para atendimento das condições estabelecidas nas Diretrizes operacionais;
- Testes de equipamentos em fábrica, quando for o caso;
- Testes de aceitação em campo;
- Partida do sistema e período de operação assistida;
- Documentação de todo equipamento e programa fornecido;

- Garantia e suporte técnico;
- Certificação de registro no CREA

14 CONDIÇÕES GERAIS

A seguir, serão relacionadas algumas condições gerais para realização dos serviços:

- Todos os desenhos complementares necessários à execução dos serviços em pauta serão de responsabilidade da empresa executante dos serviços;
- A supervisão técnica dos serviços deverá exercida por um técnico que será responsável por todos os serviços a serem executados de acordo com o contrato.
 Não será admissível a condução dos serviços sem a permanência desse profissional à sua frente;
- Todos os materiais necessários à montagem, integração e pré-operação do sistema serão de fornecimento da contratada;
- Caberá a contratada o fornecimento de máquinas, bancadas, equipamentos, instrumental e material para completa execução dos serviços contratados. É de exclusiva responsabilidade da contratada o transporte dos materiais e equipamentos por si fornecidos até o local da montagem;
- A contratada deverá fornecer todos os equipamentos de proteção individual (EPI) a todos os seus empregados bem como, garantir o uso contínuo durante a permanência no local dos serviços;
- Todo o cabeamento deverá ser subterrâneo através de eletrodutos em PVC rígido e caixas de passagem. No caso da necessidade de utilização de tubulações aparentes, devem ser previamente aprovadas pela fiscalização da obra;
- Todas as ferramentas e instrumentos necessários à execução dos serviços serão fornecidos pela empresa contratada para execução, em quantidade que atenda às necessidades da obra no prazo e qualidade dos serviços.

15 ATERRAMENTO

Será escopo da contratada a instalação do sistema de aterramento de todas as partes metálicas e dispositivos de proteção contra surto do Painel de automação.

A contratada deverá realizar medições da resistividade do solo para projeto e execução do aterramento de formas a obter uma resistência de terra menor que 10 Ohms.

16 TESTES

Após a instalação, os equipamentos serão energizados e testados em campo, serão realizados os testes operacionais simulados. Para realização dos testes, deverão ser observadas as seguintes prescrições:

- Todos os equipamentos deverão ficar ligados por um mínimo de 6 horas consecutivas antes do inicio dos testes;
- Todas as verificações serão registradas em planilhas de testes previamente elaboradas;
- Os testes serão conduzidos em seqüência contínua dos estágios de operação, se a seqüência for interrompida, independente de motivo, deverão ser repetidos tantas vezes quanto necessário, até sua realização integral;
- Na realização dos testes, o equipamento deverá operar continuamente, pelo menos durante 24 (vinte e quatro) horas;
- Durante a realização dos testes, deverão ser registrados em planilhas os resultados obtidos, os quais serão incorporados ao manual do equipamento;
- Os testes de aceitação no campo seguirão os mesmos procedimentos de testes de aceitação na fábrica.

Caso seja constatada alguma anormalidade, A empresa executora deverá se comprometer a saná-la de imediato. O sistema será considerado aceito em definitivo, após um período de testes sem falhas de no mínimo 30 dias corridos. Após a instalação do equipamento no campo, cada subsistema será submetido a um teste funcional, simulando diferentes condições de nível no sistema hidráulico. O teste será integrado com equipamentos fornecidos por outros fornecedores (CCMs), visando verificar a operação adequada do conjunto.

17 GARANTIA

A garantia deverá cobrir todos os equipamentos fornecidos, contra toda e qualquer avaria não decorrente de fatores externos que extrapolem as condições desta Especificação Técnica. Deverá cobrir ainda todos os programas aplicativos e aplicativo de supervisão desenvolvido pelo Proponente.

Durante a vigência da garantia, os materiais e serviços necessários para a reparação dos dispositivos defeituosos, correrão por conta do proponente. Qualquer falha de projeto, que venha a ser constatada e que implique no mau funcionamento das unidades de Controle, deverá ser sanada pela executora, no prazo máximo de 30 dias. A garantia deverá

constar em um termo para assegurar que os equipamentos e serviços, sejam cobertos contra quaisquer defeitos de projeto, fabricação, montagem e desempenho quando em uso normal e manutenção pelo prazo mínimo de 18 (dezoito) meses contados da data de entrega, ou 12 (doze) meses do início de sua operação, prevalecendo a situação que ocorrer primeiro.

Se durante o período de garantia qualquer defeito ocorrer, necessitando uma troca parcial ou total de algumas partes do equipamento, o período de garantia deverá ser automaticamente renovado.

18 ASSISTENCIA E SUPORTE TÉCNICO

Durante o período de garantia, todos os equipamentos as partes defeituosas deverão ser trocadas, sem nenhum custo extra. Neste caso, o fornecedor deverá arcar com todas as despesas e realizar novos testes de campo para constatar o bom funcionamento da unidade de controle. A assistência e o suporte técnico deverão constar os seguintes itens:

- Assistência técnica e manutenção;
- Atualizações de versões de softwares;
- Atualização tecnológica, mediante a divulgação contínua e freqüente de informações técnicas e operacionais de interesse, abrangendo softwares, projetos implantados, novidades e tendências.

O fornecedor deverá possuir uma equipe própria para prestar assistência técnica especializada durante a montagem, partida, aceitação final, período de garantia e durante o período de vida útil dos equipamentos, estimada em 10 anos. O fornecedor, quando solicitado pelo cliente, prestará assistência técnica no campo, durante o período de garantia. O prazo máximo para atendimento será de 48 horas.

19 CRONOGRAMA DE FORNECIMENTO

O Fornecedor deverá apresentar Cronograma de Fornecimento, com dia zero correspondendo à data da assinatura do contrato de fornecimento ou ordem de serviço, contemplando pelo menos as seguintes atividades:

- Detalhamento do projeto hardware, software, instalação, especificação funcional, etc.:
- Fabricação e montagem dos equipamentos;
- Desenvolvimento do software que se fizer necessário;
- Pré-testes dos equipamentos em fábrica;

- Entrega dos manuais;
- Entrega da documentação de testes em fábrica;
- Entrega da documentação do treinamento;
- Treinamento de hardware;
- Treinamento do software:
- Testes de aceitação em fábrica;
- Embalagem e despacho;
- Instalação;
- Pré-testes dos equipamentos em campo;
- Testes de aceitação em campo;

20 DOCUMENTAÇÃO

A empresa executora deverá entregar dentro dos prazos apresentados no Cronograma de execução e aceitos pela CAGECE, toda a documentação técnica necessária referente aos equipamentos e programas fornecidos. A documentação deverá ser apresentada em português, e deverá ser composta de: Manual de Instalação, Operação e Manutenção de maneira a possibilitar o total conhecimento dos produtos.

A documentação de Software deverá abranger, no mínimo, os seguintes tópicos:

- Descrição funcional detalhada de todo o software implantado na automação;
- Documentação detalhada referente às ferramentas de desenvolvimento de aplicativo do usuário. Deve conter a descrição das bibliotecas disponíveis, as chamadas para o sistema operacional, exemplos de implementações, etc.;
- Manual detalhado para o usuário dos softwares de testes, manutenção e configuração, contendo descrição detalhada para sua instalação, da sua estrutura e da utilização de seus recursos.

Todos os manuais elaborados pela empresa executora deverão possuir identificação baseada em nome, revisão, volume, edição e datas, além de explicações sobre as simbologias adotadas.

Toda documentação deverá ser organizada de forma a permitir fácil reprodução, modificação ou atualização e deverá estar sob controle de mudanças ou revisões. Neste caso, as novas páginas ou páginas modificadas deverão vir acompanhadas de instruções sobre sua inserção nos manuais.

A empresa executora deverá fornecer o projeto de construção e montagem da automação, devendo o mesmo ser aprovado pela equipe de fiscalização antes da sua montagem. Após aprovação em caráter definitivo, de toda documentação, a empresa

executora deverá fornecer um jogo completo em papel de toda documentação técnica e uma cópia com todos os documentos disponíveis em meio eletrônico, inclusive o projeto completo como construído (As-Built).

21 TREINAMENTO

O treinamento deverá prever transferência de conhecimento das funcionalidades dos equipamentos e programas, incluindo os processos de comunicação e obtenção de informações pelo painel de automação e seu envio para a IHM, desenvolvimento de aplicativos do usuário, etc.

Outras considerações sobre os treinamentos:

- Os treinamentos deverão ser ministrados em português, por instrutores que além de profundo conhecimento dos assuntos abordados, possuam boa didática;
- Pelo menos 15 dias antes do início do treinamento, o PROPONENTE deverá fornecer sumário do programa e material didático a ser utilizado, em português propondo datas, horários e local para a sua realização;
- Reproduzir o material didático utilizado para fins de treinamentos internos posteriores;
- Os treinamentos deverão ser baseados nas documentações definitivas;
- Os cursos de treinamento serão ministrados nas dependências da execução do projeto, correndo por conta da executora todas as despesas de transporte de seu pessoal e de todos os materiais necessários.

O projeto prevê um treinamento das equipes de operação e de manutenção do sistema, contemplando os softwares dos CLP e os demais equipamentos e instrumentos agregados ao sistema. Para tal deverá ser disponibilizado um instrutor, que deve distribuir todas as fases do treinamento previsto e a operação assistida.

O treinamento a ser ministrado deve possibilitar à equipe técnica da EMPRESA tornar-se auto-suficiente na instalação, configuração, operação, manutenção e expansão de todo o hardware e software ofertado. O treinamento deve abranger o conhecimento dos módulos eletrônicos e dos programas e será constituído de aulas expositivas e práticas. A PROPONENTE deverá utilizar diversos recursos, como projetores e utilizar equipamentos similares aos utilizados na presente automação, de modo que os treinamentos serão essencialmente práticos e focados nas soluções aplicadas.

O curso de operação e manutenção deve compreender os seguintes módulos:

- Descrição funcional e operacional detalhada do Painel de automação;
- Utilização do terminal de programação e carregador de programas do CLP utilizado;

- Descrição técnica do sistema e equipamentos;
- Manutenção preventiva;
- Manutenção corretiva;
- Uso da IHM.

Especificação Técnica

22 ESPECIFICAÇÃO TÉCNICA DO SISTEMA DE AUTOMAÇÃO

22.1 PAINEL DA AUTOMAÇÃO

O quadro da automação será baseado em Controlador lógico programável (CLP), fonte auxiliar, proteções contra surtos (DPS), borneiras, canaletas, no-break (UPS de corrente contínua – entrada 24 Vcc e Saída 24 Vcc) e demais acessórios do painel para o perfeito funcionamento do sistema.

A alimentação do quadro de automação deverá ser através de transformador isolador de núcleo saturado (380Vca-220Vca), onde todas as entradas, tanto de alimentação elétrica quanto de dados analógicos, serão protegidas contra surtos de tensão de origem externa.

O quadro metálico, providos de porta frontal com fecho e um sensor para indicação de abertura de porta. A estrutura será do tipo auto-portante, montagem sobreposta à parede. A entrada de cabos na unidade de controle será pela parte inferior e não deve permitir a passagem de animais para seu interior.

O encaminhamento da fiação interna ao painel será feito através de canaletas em PVC rígido, com recortes laterais e tampa, dimensionadas com previsão de expansão futura, e será feita considerando-se os níveis e a natureza de sinal de cada circuito e possuirão código de cores conforme normas e padrões NBR.

Antes da fabricação o projeto deste painel deve ser submetido a aprovação da CAGECE.

22.2 CONTROLE LÓGICO PROGRAMÁVEL - CLP

Deverão ser utilizados controladores industriais, todos com relógio em tempo real e com reservas de entradas e saídas, analógicas e digitais, maior que 20%.

Será utilizado Controlador Lógico Programável (CLPs) tipo compacto voltado para aplicações de pequeno e médio porte, com duas portas de comunicação. Uma porta compatível com o protocolo aberto industrial RS – 485 (MODBUS-RTU ou PROFIBUS-DP) e a outra TCP-IP Ethernet (MODBUS-TCP/IP PROFINET).

Os controladores deverão utilizar um software de programação em conformidade com a norma internacional IEC 61131-3 onde a licença de programação deverá ser fornecida.

O CLP deverá ter uma reserva mínima de 20 % de suas entradas e saídas (digitais e analógicas).

22.3 FOLHA DE DADOS DOS EQUIPAMENTOS

22.3.1 DISPOSITIVO DE PROTEÇÃO CONTRA SURTOS

Descrição	Dispositivo de Proteção Contra Surtos
Tipo	Varistor
Máxima Tensão de Operação Contínua (Uc)	235V (1,1 x U0)
Corrente Nominal de Impulso	50 kA
Corrente Nominal de Descarga	20 kA
Corrente Máxima de Descarga	40 kA
Nível de Proteção(Up)	2,5 kV
Tempo de Resposta	100 ns
Dispositivo de proteção embutido	Sim
Temperatura ambiente	-40°C à 85°C
Índice de Proteção	IP20

22.3.2 MINI-DISJUNTORES TERMOMAGNÉTICOS

Número de Pólos	MONOPOLAR
Curva Característica de Disparo	В
Tensão Nominal Máxima	440VCA
Corrente Máxima de Interrupção	6kA
Disparador - Sobrecarga	SIM
Disparador – Curto-Circuito	SIM
Corrente de Disparo de Curto-Circuito	5-10 x ln
Seção dos Condutores – Cabo Flexível com	4mm ²
Terminal – Terminais Superior	
Seção dos Condutores – Cabo Flexível com	4mm ²
Terminal – Terminais Inferiores	
Temperatura de Operação	ATÉ 45°C

Número de Pólos	TRIPOLAR
Curva Característica de Disparo	В
Tensão Nominal Máxima	440VCA
Corrente Máxima de Interrupção	6kA
Disparador - Sobrecarga	SIM
Disparador – Curto-Circuito	SIM
Corrente de Disparo de Curto-Circuito	5-10 x ln
Seção dos Condutores – Cabo Flexível com	4mm ²
Terminal – Terminais Superior	
Seção dos Condutores – Cabo Flezível com	4mm ²
Terminal – Terminais Inferiores	
Temperatura de Operação	ATÉ 45°C

22.3.3 CONTROLADOR LÓGICO PROGRAMÁVEL - CLP

Descrição	Controlador Lógico Prográmavel
Tensão de alimentação	24VCC
Entradas Digitais	08 entradas digitais inclusas

Saídas Digitais	08 saídas digitais inclusas – 2A saída	
Contadores	Inclusão de 4 entradas rápidas – Frequência-100kHz, 32 bits	
Portas de Comunicação	01 Porta Ethernet, 01 Porta RS485, 01 Porta USB	
Relógio de Tempo Real	Incluso	
PID	4 Laços	
Armazenamento	Inclusão de interface para cartão de memória	
Memória	256kB para programas com 10000 instruções	
Protocolo	Modbus RTU Mestre/Escravo e MODBUS TCP	
Suporte	Trilho DIN 35mm	
Arquitetura	Arquitetura Modular com capacidade para inclusão de novos	
	módulos	
Normas	IEC 61131	
Software de	Acompanhar software de programação gratuito para edição,	
Programação	upload e download do programa no CLP	
Outros	Acompanhar cabo de comunicação	
Quantidade	01	

22.3.4 CARTÕES DE EXPANSÃO DO CLP

Descrição	Módulo de expansão com entradas analógicas	
Entradas Analógicas	4 entradas analógicas (4-20mA), 12 bits	
Suporte	Trilho DIN 35mm	
Arquitetura	Arquitetura Modular e compatível com CLP especificado	
Proteção contra surtos	1 kV modo comum	
Quantidade	01	

Descrição	Módulo de expansão com saídas analógicas
Entradas Analógicas	4 saídas analógicas (4-20mA), 12 bits
Suporte	Trilho DIN 35mm
Arquitetura	Arquitetura Modular e compatível com CLP especificado
Proteção contra surtos	1 kV modo comum
Quantidade	01

22.3.5 FONTE DE ALIMENTAÇÃO

Descrição	Fonte de Alimentação Chaveada
Tensão de Entrada	90 à 220VCA
Tensão Nominal de Saída	24 VCC +/- 1%
Corrente Nominal de Saída	5 A
Ripple de Saída	< 100mVpp
Sinalização Operando OK	Incluso
Sinalização de Sobrecarga	Incluso
Local de Instalação	Trilho DIN 35mm
Sistema de Conexão	Conectores Plugáveis
Grau de Proteção (mínimo)	IP 20
Temperatura Máxima de Operação	+ 70°C
Umidade Máxima de Operação	90% em 25°C
Proteções inclusas	Sobrecarga e curto-circuito

Quantidade 01

22.3.6 IHM

Descrição	Interface Homem Máquina Colorida de 5.7"
Tensão de alimentação	24 VCC
Tela	5.7", resolução 320x240px, colorida, touchscreen
Visor	LCD-TFT
Montagem	Encaixada em painel
Tipo de iluminação de Tela	Backlight LED
Memória de aplicação	16 Mb
Expansão de memória	Entrada para Cartão SD ou Entrada para Pendrive
Porta de Comunicação	RS232/RS-485
Porta USB	USB Host 2.0
Porta Ethernet	10/100 BASE-T (RJ-45 blindado)
Proteção do frontal	IP65
Protocolo	Modbus RTU / Modbus TCP/IP
Software de programação	Acompanhar software de programação gratuito para
	edição e download do programa na IHM
Relógio tempo real	Acesso ao relógio de tempo real do CLP
Outros	Compatível com o CLP especificado
Quantidade	01

22.3.7 CONECTORES DE PASSAGEM

Descrição	Conector de passagem
Tensão nominal	250VCA
Corrente nominal	30A
Área nominal	4mm ²
Capacidade de conexão	0,5 a 4mm ²
Montagem	Em trilho DIN 35mm

Descrição	Conector de passagem - terra
Tensão nominal	400VCA
Corrente nominal	30A
Área nominal	4mm ²
Capacidade de conexão	0,5 a 4mm ²
Montagem	Em trilho DIN 35mm

Descrição	Conector de passagem
Tensão nominal	250VCA
Corrente nominal	8A
Área nominal	2,5mm ²
Capacidade de conexão	0,5 a 2,5mm ²
Montagem	Em trilho DIN 35mm

Descrição	Conector de passagem - terra
Tensão nominal	400VCA
Corrente nominal	30A
Área nominal	2,5mm ²
Capacidade de conexão	0,5 a 2,5mm ²
Montagem	Em trilho DIN 35mm

22.3.8 BORNE FUSÍVEL

Descrição	Borne fusível com fusível incluso
Tensão nominal	400VCA
Corrente nominal do borne	6A
Corrente nominal do fusível	2A
Área nominal	2,5 mm ²
Tipo de fusível	Vidro, 5x20mm
Capacidade de conexão	0,5 a 2,5mm ²
Montagem	Em trilho DIN 35mm

22.3.9 CONTATOR

Descrição	Contator de potência bipolar
Tensão nominal	400VCA
Tensão nominal da bobina	220VCA
Corrente máxima	32A (AC-3)
Contatos auxiliares	2NA + 1NF
Montagem	Em trilho DIN 35mm

22.3.10 FUSÍVEL CARTUCHO

Descrição	Porta fusível cartucho tripolar
Tensão nominal	400VCA
Corrente nominal	32A
Dimensões	10x38mm
Capacidade de interrupção	70kA
Montagem	Em trilho DIN 35mm
Quantidade	04

Descrição	Fusível cartucho
Tensão nominal	400VCA
Corrente nominal	20A
Dimensões	10x38mm
Característica	aR – Ação ultrarápida para semicondutores
Quantidade	12

22.3.11 INVERSOR DE FREQUÊNCIA

Descrição	Inversor de Frequência
Tensão de Alimentação	380 VCA Trifásico
Tensão de Saída	380 VCA Trifásico
Motor máximo aplicavel	7,5CV
Corrente Nominal de Saída	13A
Grau de Proteção	IP20
IHM	Inclusa
Fitro RFI Interno	Incluso
Entrada analógica	Uma entrada analógica inclusa, 4-20 mA
Saída Analógica	Uma saída analógica inclusa, 4-20mA
Entradas Digitais	Uma entrada digital inclusa
Saídas Digitais	Uma saída digital inclusa
Quantidade	01

22.3.12 RELÉ DE INTERFACE

Descrição	Relé de Interface 24VCC
Tipo	Eletromecânico
Configuração dos contatos	1 contato reversível, NA, 5A, 250VCA
Tensão de alimentação da	24VCC
bobina	
Montagem	Em trilho DIN 35mm
Quantidade	16

22.3.13 PROTETOR DE PORTA ANALÓGICA

Descrição	Protetor de Porta Analógica
Tensão nominal	24VCC
Máxima Tensão de operação	26VCC
contínua	
Corrente de Descarga Nominal	10kA
Grau de Proteção	IP20
Quantidade	08

22.3.14 PAINEL ELÉTRICO

Descrição	Painel Elétrico com Chapa de Montagem
Dimensões	1200 x 650 x 300
Grau de Proteção	IP64
Quantidade	01

Descrição	Conjunto de Ventilação para Painel Elétrico com
	Ventilador
Dimensões	120 x 120 x 35mm

Material	Termoplástico
Temperatura de Operação	0 a 60°C
Carcaterísticas	Veneziana com filtro
Tensão Nominal	220VCA
Corrente Nominal	0,24A
Grau de Proteção	IP54
Quantidade	01

Descrição	Conjunto de Ventilação para Painel Elétrico com Ventilador
Dimensões	120 x 120 x 35mm
Material	Termoplástico
Temperatura de Operação	0 a 60°C
Carcaterísticas	Veneziana com filtro
Grau de Proteção	IP54
Quantidade	01

22.3.15 BOTÃO DE COMANDO DE EMERGÊNCIA PARA PAINEL ELÉTRICO

Descrição	Botão de Emergência para painel elétrico
Tipo	Cabeçote cogumelo com trava e giro p/
	destravar com diâmetro de 40mm
Cor	Vermelho
Tensão Nominal	220VCA
Contatos	Um contato reversível NF
Montagem	Furo para fixação com diâmetro de 22mm.
_	Corpo plástico
Quantidade	01

22.3.16 BOTÃO DE COMANDO PLANO PARA PAINEL ELÉTRICO

Descrição	Botão de Comando Plano
Tipo	Cabeçote plano faceado redondo
Cor	Vermelho
Tensão Nominal	220VCA
Contatos	Um contato reversível NA
Montagem	Furo para fixação com diâmetro de 22mm. Corpo plástico

Descrição	Botão de Comando Plano
Tipo	Cabeçote plano faceado redondo
Cor	Preto
Tensão Nominal	220VCA
Contatos	Um contato reversível NA
Montagem	Furo para fixação com diâmetro de 22mm. Corpo plástico

Descrição	Botão de Comando Plano				
Tipo	Cabeçote plano faceado redondo				
Cor	Verde				
Tensão Nominal	220VCA				
Contatos	Um contato reversível NA				
Montagem	Furo para fixação com diâmetro de 22mm. Corpo plástico				

22.3.17 SINALIZADOR PARA PAINEL ELÉTRICO

Descrição	Sinalizador para Painel Elétrico com Lâmpada			
	Led			
Tensão Nominal	220VCA			
Cor	Vermelho			
Iluminação	Led Integrado ao corpo			
Montagem	Furo para fixação com diâmetro de 22mm.			
_	Corpo plástico			

22.3.18 RELÉ DE NÍVEL

Descrição	Relé de Nível com Três Eletrodos de Nível
Tensão Nominal	220VCA
Eletrodos	Referência, nível máximo e nível mínimo
Ajuste de sensibilidade	Incluso
Contatos	1 Contato reversível NA
Montagem	Em triho DIN 35mm

22.3.19 TOMADAS

Descrição	Tomada Auxiliar 2 Polos mais Terra 20A,	
	250VCA Para Painel Elétrico	
Quantidade	01	

Descrição	Tomada Industrial para uso específico em Containers eletrificados 4 Polos mais Terra 32A, 400VCA, do tipo sobrepor, a prova D'água, IP65, Termo-plástico auto-extinguível, tampa trava- subtampa, Tensão máxima de trabalho de 690 Volts
Quantidade	01

22.3.20 VÁLVULA SOLENOIDE DE 1/2"

Descrição	Válvula	solenoíde	de	duas	vias,	ação	direta,
	normalm	nente fecha	ada,	corpo	em	latão f	orjado,

	com conector DIN		
Aplicação	Tratamento de água		
Temperatura	50°C		
Pressão Máxima	10 Bar		
Conexão	3/4"		
Características Elétricas	Tensão Nominal = 220VCA, Potência = 12W		
Grau de Proteção	IP65		
Conexão Elétrica	Conector padrão DIN com circuito de absorção		
	de EMF de retrocesso da bobina incluso,		
	2p+terra, IP65		
Quantidade	01		

22.3.21 MEDIDOR DE VAZÃO ELETROMAGNÉTICO C/ CONVERSOR

Descrição	Medidor de Vazão Eletromagnético			
Aplicação	Tratamento de água			
Diâmetro	Ver projeto hidraúlico			
Pressão Nominal	10 Bar			
Sentido do fluxo	Bidirecional			
Temperatura de Operação	0°C a 100°C			
Características Elétricas	Transmissão de sinal em 4-20mA ou Pulsante			
Grau de Proteção	IP65			
Conexão Elétrica	1/2" com prensa-cabo			
Quantidade	02			

Descrição	Conversor/Transmissor de Vazão		
Funções	Indicador de vazão instantânea e totalizador		
Indicação	Display		
Saída analógica	4-20mA isolada, resolução 12 bits		
Saída de Pulso	Saída transistor NPN isolado		
Alimentação	24VCC		
Grau de Proteção	IP65		
Quantidade	02		

22.3.22 TRANSMISSOR C/ SENSOR DE NÍVEL DE RADAR

Descrição	Transmissor de nível com sensor de nível radar		
Aplicação	Tratamento de água		
Tensão de alimentação	24VCC		
Saída analógica	4-20mA		
Proteção Elétrica	Classe III		
Alcance	Medição de altura de até 3 metros		
Tipo de Sonda	Haste		
Comprimento da Sonda	Comprimento de sonda deverá ser conforme as		
	dimensões do tanque de saturação. Verificar		
	projeto hidraúlico		

·	Conexão deverá ser conforme as conexões existentes no tanque de saturação. Verificar projeto hidraúlico
Quantidade	02

22.3.23 TRANSMISSOR DE PRESSÃO

Descrição	Transmissor de pressão			
Aplicação	Tratamento de água			
Tensão de alimentação	24VCC			
Sinal de Saída	4-20mA			
Alcance de Medição	0-10 Bar			
Conexão ao processo	Conexão deverá ser conforme as conexões existentes no tanque de saturação. Verificar projeto hidraúlico.			
Quantidade	01			

22.3.24 VÁLVULA COM ATUADOR PROPORCIONAL

Descrição	Válvula com atuador proporcional	
Aplicação	Tratamento de água – Controle de fluxo de água	
Tensão de alimentação	24VCC	
Sinal de Saída	4-20mA	
Pressão Máxima	10 Bar	
Conexão ao processo	Conexão deverá ser conforme as conexão	
	existente na saída do tanque de saturação.	
	Verificar projeto hidraúlico.	
Quantidade	01	

Descrição	Válvula com atuador proporcional
Aplicação	Ar comprimido
Tensão de alimentação	24VCC
Sinal de Entrada	4-20mA
Pressão Mínima	1 Bar
Pressão Máxima	6 Bar
Pressão de Saída	0 a 100% da pressão de entrada
Temperatura de Operação	0 a 80°C
Conexão ao processo	3/4", NPT. Conforme projeto hidraúlico
Quantidade	01

Memorial de Cálculo

Obra:	CENTRO DE TREINAMENTO, DEMONSTRAÇÃO E DESENVOLVIMENTO EM REÚSO AGRÍCOLA DE ÁGUA CÂMARA DE SATURAÇÃO DO TANQUE DE FLOTAÇÃO PILOTO	
Objeto:	PROJETO ELÉTRICO - MEMORIAL DE CÁLCULO	

1.0 - DADOS DA OBRA

Cliente: COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ

Obra: Projeto Elétrico do piloto da câmara de saturação do tanque de flotação instalado em contêiner do Centro de Pesquisas em Reuso CP

Endereço: O centro de pesquisas em reuso - CPR, está localizado na Av. José Nicodemos Assunção, s/nº, Aquiraz - CE

Coordenadas: 24M 567192.15 E 9566711.76 S

Naturalidade da Obra: Pública

Ramo de Atividade: Saneamento Básico Tipo de Utilidade: Iluminação e Motores Atividade de maior carga: Motores

Ramal de Entrada: Através de tomada Stech 3P+T 32A do tipo sobrepor instalada no contêiner que deverá ter sua alimentação proveniente

do local de instalação.

Nº de medidores: 01 conjunto de Medição em baixa tensão com leitura direta existente no local de instalação do contêiner.

2.0 - DADOS DO PROJETISTA

Nome: MARCOS LENO FERREIRA POMPEU

End: comercial: Rua Dr. Lauro Vieira Chaves, 1030, Aeroporto. Fortaleza-Ce

Título: ENGENHEIRO ELETRICISTA **Registro CREA:** 061340412-2

3.0 - ENTRADA DE ENERGIA

Através de tomada Stech 3P+T 32A do tipo sobrepor instalada no exterior do container que deverá ter sua alimentação proveniente do local de instalação.

4.0 - MEDIÇÃO

A medição da energia consumida será feita através do medidor de baixa tensão, localizado no limite do terreno.

5.0 - PROTEÇÃO GERAL

A proteção de cada quadro será por disjuntor tripolar, termomagnético de corrente nominal e capacidade de interrupção simétrica indicada em projeto

6.0 - ATERRAMENTO

Para o sistema elétrico do contêiner da câmara de saturação, será construida uma malha de 06 hastes verticais de terra de 5/8 de diâmetro por 2,40m de comprimento, interligadas por cabo de cobre nu com bitola indicada em projeto ao conector de aterramento externo do contêiner. Todos os quadros de distribuição e proteção existentes no contêiner serão ligados a malha de terra. A malha deverá apresentar sempre que for medido, resistência de terra menor ou igual 10 OHMS a qualquer época do ano.

7.0 - CRITÉRIOS DE DIMENSIONAMENTO

7.1 - DIMENSIONAMENTO DA ILUMINAÇÃO

7.1.1 - Valor médio do iluminamento - Iluminação Externa

$$E = \frac{F \times f \times N}{1 \times D}$$

Onde:

E=lluminamento médio (lux)
F=Fator de utilização da lâmpada
f=Fluxo luminoso da lâmpada
N=Número de lâmpadas
L=Largura (m)
D=Distância entre luminárias (m)

Obra:	CENTRO DE TREINAMENTO, DEMONSTRAÇÃO E DESENVOLVIMENTO EM REÚSO AGRÍCOLA DE ÁGUA CÂMARA DE SATURAÇÃO DO TANQUE DE FLOTAÇÃO PILOTO	
Objeto:	PROJETO ELÉTRICO - MEMORIAL DE CÁLCULO	

7.1.2 - Método dos Lumens - Iluminação Interna:

$$N = \frac{E \times S}{Fu \times Fd \times f}$$

Onde:

N=Número de lâmpadas E=Iluminamento médio (lux) S=Área(m²)

Fu=Fator de utilização do recinto

Fd=Fator de depreciação

F=Fluxo luminoso da lâmpada

7.2 - DIMENSIONAMENTO DOS CONDUTORES DE FASE

7.2.1 - Critério de máxima capacidade de condução

- A capacidade de condução de corrente do condutor (lz) deve ser igual ou superior a corrente de projeto (lb) do circuito, incluindo os fatores de correção aplicáveis.

lb <= Iz

7.2.2 - Critério de máxima queda de tensão

- A queda de tensão em qualquer ponto da instalação não deverá ultrapassar os limites estabelecido na tabela abaixo.

Queda de Tensão	Local da queda de tensão calculada	
7%	Terminais secundário do trafo MT/BT	
5%	Ponto de entrega	
7%	Terminais de saída do gerador	
4%	Circuitos terminais	

7.2.3 - Seção mínima indicada de acordo com o tipo de condutor e utilização do circuito.

Tipo de condutor	Utilização do circuito	Seção mínima	
	Circuito de Iluminação	1,5 Cu ou 16 Al	
Condutores e cabos	Circuito de força	2,5 Cu ou 16 Al	
isolados	Circuito de sinalização e de controle	0,5 Cu	
	Condutores de força	10 Cu ou 16 Al	
Condutores nus	Condutores de sinalização e circuitos de controle	4 Cu	

7.3 - CRITÉRIO DE DIMENSIONAMENTO DO CONDUTOR NEUTRO

- O Condutor neutro não pode ser comum a mais de um circuito
- O Condutor neutro de um circuito monofásico deve ter a mesma seção do condutor fase
- Quando, num circuito trifásico com neutro, a taxa de terceira harmônica e seus múltiplos for superior a 15%, a seção do condutor neutro não deve ser inferior à dos condutores de fase, podendo ser igual à dos condutores de fase se essa taxa não for superior a 33%.
- Num circuito trifásico com neutro e cujos condutores de fase tenham uma seção superior a 25mm², a seção do condutor neutro pode ser inferior à dos condutores de fase, sem ser inferior aos valores indicados na tabela abaixo, em função dos condutores fase, quando o circuito for presumivelmente equilibrado, a corrente das fases não contiver uma taxa de terceira harmônica e múltiplos superior a 15% e o condutor neutro for protegido contra sobrecorrentes.

Obra:	CENTRO DE TREINAMENTO, DEMONSTRAÇÃO E DESENVOLVIMENTO EM REÚSO AGRÍCOLA DE ÁGUA CÂMARA DE SATURAÇÃO DO TANQUE DE FLOTAÇÃO PILOTO	
Objeto:	PROJETO ELÉTRICO - MEMORIAL DE CÁLCULO	

Seção dos condutores de fase mm²	Seção reduzida do condutor neutro mm²	
S<=25	S	
35	25	
50	25	
70	35	
95	50	
120	70	
150	70	
185	95	
240	120	
300	150	
400	185	

Tabela - Seção reduzida do condutor neutro

7.4 - CRITÉRIO DE DIMENSIONAMENTO DO CONDUTOR DE PROTEÇÃO.

- A seção do condutor de proteção pode ser determinada através da tabela abaixo quando o condutor de proteção for constituido do mesmo metal dos condutores de fase.

Seção dos condutores de fase S mm²	Seção mínima do condutor de proteção correspondente mm²
S<=16	S
16 <s<35< td=""><td>16</td></s<35<>	16
S>35	S>2

Tabela - Seção mínima do condutor de proteção

7.5 - CRITÉRIO DE DIMENSIONAMENTO DO NÚMERO DE PONTOS DE TOMADAS

- O número de tomadas deve ser determinado em função da destinação do local e dos equipamentos elétricos que podem ser aí utilizados

Local	Critério de dimensionamento	
Banheiros	pelo menos um ponto de tomada próximo ao lavatório	
Cozinhas, copas, áreas de serviço	um ponto de tomada para cada 3,5m ou fração de perímetro	
varandas	pelo menos um ponto de tomada	
Salas e dormitórios	pelo menos um ponto de tomada para cada 5m, ou fração de perímetro	
Demais cômodos	um ponto de tomada para áreas <= a 6m²	
Demais comodos	um ponto de tomada para cada 5m, ou fração de perímetro para áreas > 6m²	

Tabela - Critério de dimensionamento do número de tomadas

7.6 - CRITÉRIO DE DIMENSIONAMENTO DOS ELETRODUTOS

- A taxa de ocupação máxima dos condutores nos eletrodutos utilizados no projeto será de 40%.

7.7 - CRITÉRIO DE DIMENSIONAMENTO DOS FATORES DE CORREÇÃO DE IZ

A capacidade de condução de corrente corrigida do condutor (Iz') é dada por:

Iz' = Iz x (Fator de correção de temperatura - FCT) x (Fator de correção de agrupamento- FCA)

7.7.1 - Fator de correção de temperatura ambiente (FCT)

- Os fatores de correção para temperaturas ambientes diferentes de 30°C para linhas não subterrâneas e de 20°C(temperatura do solo) para linhas subterrâneas, serão obtidos através da tabela abaixo.

Obra:	CENTRO DE TREINAMENTO, DEMONSTRAÇÃO E DESENVOLVIMENTO EM REÚSO AGRÍCOLA DE ÁGUA CÂMARA DE SATURAÇÃO DO TANQUE DE FLOTAÇÃO PILOTO	
Objeto:	PROJETO ELÉTRICO - MEMORIAL DE CÁLCULO	

Tomporoture 9C	Isolação	
Temperatura °C	PVC	EPR ou XLPE
Ambiente		
25	1,06	1,04
35	0,94	0,96
40	0,87	0,91
45	0,79	0,87
50	0,71	0,82
55	0,61	0,76
60	0,5	0,71
Do solo	·	
15	1,05	1,04
25	0,95	0,96
30	0,89	0,93
35	0,84	0,89
40	0,77	0,85
45	0,71	0,8
50	0,63	0,76

Tabela - Fatores de correção de temperatura

7.7.2 - Fator de correção aplicáveis a agrupamentos de condutores (FCA)

7.7.2.1 - Fator de correção aplicáveis a condutores agrupados em feixe e em camada única.

- O fator de correção será obtido através da tabela 42 contida na NBR-5410/2008.

7.7.2.2 - Fator de correção aplicáveis a condutores agrupados em mais de uma camada.

- O fator de correção será obtido através da tabela 43 contida na NBR-5410/2008.

7.7.2.3 - Fator de agrupamento para linhas com cabos diretamente enterrados.

- O fator de correção será obtido através da tabela 44 contida na NBR-5410/2008.

7.7.2.4 - Fator de agrupamento para linhas em eletrodutos enterrados.

- O fator de correção será obtido através da tabela 45 contida na NBR-5410/2008.

7.7.3 - Correção da capacidade de corrente (Iz) do condutor

- A correção da capacidade de corrente (Iz) do condutor será obtida pela expressão abaixo:

Iz'= Iz x FCT x FCA

Onde:

Iz' = Capacidade de corrente de condutor corrigida

Iz = Capacidade de corrente do condutor

FCT = Fator de correção de temperatura

FCA = Fator de correção por agrupamento de condutores

	Obra:	CENTRO DE TREINAMENTO, DEMONSTRAÇÃO E DESENVOLVIMENTO EM REÚSO AGRÍCOLA DE ÁGUA CÂMARA DE SATURAÇÃO DO TANQUE DE FLOTAÇÃO PILOTO	SES
ſ	Objeto:	PROJETO ELÉTRICO - MEMORIAL DE CÁLCULO	PÁGINA
	-		5

7.8 - CRITÉRIO DE DIMENSIONAMENTO DOS DISPOSITIVOS DE PROTEÇÃO

- Para que a proteção dos condutores contra sobrecarga fique assegurada, as características de atuação do dispositivo destinado a provê-la devem ser tais que:

Ib <= In e I2 <= 1,45lz'

Onde:

Ib = Corrente de projeto do circuito;

Iz' = Capacidade de corrente dos condutores, nas condições previstas para sua instalação;

In = Corrente nominal do dispositivo de proteção;

12 = Corrente convencional de atuação, para disjuntores, ou corrente convencional de fusão para fusíveis.

8.0 - CÁLCULO DA CORRENTE DE PROJETO (Ib)

8.1 - Cargas em geral

-	sistema monofásico	- sistema trifásico
lb=-	Potência(W)	Ib= Potência(W)
ID	220(V) x FP	280(V) x Raiz(3) x FP

FP = Fator de potência

8.2 - Motores

	- sistema monofásico	- sistema trifásico
lb=	Potência(W) x Fsm	Ih= Potência(W) x Fsm
10-	220(V) x FP	380(V) x Raiz(3) x FP

Onde:

FP = Fator de potência

Fsm = Fator de serviço do motor

9.0 - CÁLCULO DA QUEDA DE TENSÃO

	- sistema monofásico	- sistema trifásico
DV%=-	200 x (ro) x L x lb	DV%= 173,2 x (ro) x L x lb
DV 70-	Sc x Vfn	Sc x Vff

Onde:

L = Comprimento do circuito (m);

Ib = Corrente de projeto (A);

Vfn = Tensão entre fase e neutro;

Vff = Tensão em fase e neutro (V);

Sc = Seção do condutor em mm²;

DV% = Queda de tensão percentual;

ro = resistividade elétrica do condutor, onde alumínio = 1/35 e cobre = 1/56.

Obra:	CENTRO DE PESQUISA EM REUSO CPR CÂMARA DE SATURAÇÃO DO TANQUE DE FLOTAÇÃO PILOTO	SES
Objeto:	PROJETO ELÉTRICO - MEMORIAL DE CÁLCULO	PÁGINA 6

10.0 - DIMENSIONAMENTO DA ILUMINAÇÃO

10.1 - DIMENSIONAMENTO DA ILUMINAÇÃO INTERNA

10.1.1 - Dados de entrada:

Fator de depreciação:

Largura da ambiente: 1,12 m

Comprimento do ambiente: 6 m

Altura do ambiente 2,4 m

Altura das luminárias 2,2 m

Teto: 70%

Parede: 50% Piso: 20% 0,75

Fluxo utilizado no cálculo: 2700 lúmens/lâmpada

Lâmpadas/Luminária:1Fator de utilização:0,2Iluminância mínima200

Tipo de luminária: Luminária para 01 lâmpada compacta fluorescente de 32W, blindada

10.1.2 - Valores calculados:

Lúmens: 8960

Nº de luminárias:3 unidadesNº de lâmpadas:3 unidadesPotência Total:96 W

11 - RESUMO DA CARGA INSTALADA

CARGA INSTALADA TOTAL												
Carga		llumina	ação		Tom	adas	Motor (C\/)	Perdas (W)				
Carga	1 x 20W	2 x 16W	1 x 32W	1 x 150W	300 VA	5 kVA	WOLDI (CV)	reidas (W)	Potência (W)			
Bomba d'água							4	517	2944			
Raspador							1	45	736			
Compressor							1	45	736			
Bomba dosadora							1	45	736			
QDLF			3		1			0	396			
Total					•			652	5548			

12 - CÁLCULO DA DEMANDA

De acordo com a NT - 002/2011 R-03, temos:

$$D = \frac{0,77 \text{ x a}}{\text{FP}} + 0,7^*b + 0,9^*c + 0,59^*d + 1,20^*e + F + G$$

Onde:

D - demanda total em kVA

a - potência da iluminação e tomadas de uso geral, em kW

b = 0c = 0

d = 0e = 0

F - demanda dos motores Pnm - Potência de cada motor em CV

F= Σ(0,87 x Pnm x Fu x Fs)

Fu - Fator de utilização dos motores, de acordo com a tabela 7 da NT - 002/2011 R-03

Fs - Fator de simulteneidade dos motores. Tabela 8 da NT - 002/2011 R-03

G - Outras cargas em kVA

Obra:	CENTRO DE PESQUISA EM REUSO CPR CÂMARA DE SATURAÇÃO DO TANQUE DE FLOTAÇÃO PILOTO	SES
Objeto:	PROJETO ELÉTRICO - MEMORIAL DE CÁLCULO	PÁGINA 7

12.1 Iluminação e tomadas: FP= 0,87

De acordo com a tabela 5 da NT - 002/2011 R-03, o fator de demanda para a atividade do cliente é:

a= 0,639 kW

12.2 - Motores

Bomba d'água
Potência= 4 CV
Quantidade 1

Raspador

Potência = 1 CV Quantidade 1

Compressor

Potência= 1 CV Quantidade 1

Bomba dosadora

Potência = 1 CV Quantidade 1

> Fu= 0,7 Fs= 1 F1= 2,436 F2= 0,609 F3= 0,609 F4= 0,609 F= 4,263 kVA G= 0 kVA

Aplicando a fórmula da NT - 002/2011

Demanda Total= 4,83 kVA

Obra:	CENTRO DE TREINAMENTO, DEMONSTRAÇÃO E DESENVOLVIMENTO EM REÚSO AGRÍCOLA DE ÁGUA CÂMARA DE SATURAÇÃO DO TANQUE DE FLOTAÇÃO PILOTO	SES
Objeto:	PROJETO ELÉTRICO - MEMORIAL DE CÁLCULO	

1.0 - QUADRO GERAL DE DIMENSIONAMENTO DOS CIRCUITOS

1.1 - QGBT

	Quadro de Dimensionamento dos Circuitos e Proteção - QGBT																	
Circuito	Descrição	Tensão (V)	Potência Total (W)	Fator de Potência	Isolação do cabo	Tipo de Condutor	FCT x FCA	Método de instalação	Seção por Critério Iz (mm²)	Seção por Critério ΔV (mm²)	Seção Adotada (mm²)	Iz(A)	Iz'(A)	Dist.(m)	In (A)	ΔV(%)	Condutor(mm²)	Disjuntor (A)
1	CCM 1	380	5895,2	0,81	PVC	CU	0,87	B1	2,5	0,5	4	28	24,36	4	11,62	0,09	3#4(4)+T4 mm ²	3x16
2	QDLF	220	1139	0,9	PVC	CU	0,87	B1	0,5	0,5	2,5	21	18,27	4	1,9	0,02	2#2,5(2,5)+T2,5 mm ²	3x10
3	RESERVA	220	500															1x10
Α	Alimentador QGBT	380	7534,92	0,84	PVC	CU	0,87	B1	2,5	1,5	4	36	31,32	20	13,86	0,38	3#6(6)+T6 mm ²	3x20

1.1 - CCM

	Quadro de Dimensionamento dos Circuitos e Proteção - CCM																	
Circuito	Descrição	Tensão (V)	Potência Total (W)	Fator de Potência	Isolação do cabo	Tipo de Condutor	FCT x FCA	Método de instalação	Seção por Critério Iz (mm²)	Seção por Critério ΔV (mm²)	Seção Adotada (mm²)	Iz(A)	Iz'(A)	Dist.(m)	In (A)	ΔV(%)	Condutor(mm²)	Disjuntor (A)
1.1	BOMBA D'ÁGUA 4CV	380	3546,99	0,8	PVC	CU	0,87	B1	1	0,5	2,5	21	18,27	10	6,74	0,22	3#2,5(2,5)+T2,5 mm ²	3x10
1.2	BOMBA DOSADORA	380	782,98	0,8	PVC	CU	0,87	B1	0,5	0,5	2,5	21	18,27	10	1,49	0,05	3#2,5(2,5)+T2,5 mm ²	3x10
1,3	COMPRESSOR 1CV	380	782,98	0,8	PVC	CU	0,87	B1	0,5	0,5	2,5	21	18,27	10	1,49	0,05	3#2,5(2,5)+T2,5 mm ²	3x10
1,4	RASPADOR 1CV	380	782,98	0,8	PVC	CU	0,87	B1	0,5	0,5	2,5	21	18,27	15	1,49	0,07	3#2,5(2,5)+T2,5 mm ²	3x10
	Alimentador CCM	380	6174,92	0,8	PVC	CU	0,87	B1	2,5	0,5	4	28	24,36	4	11,2	0,09	3#4(4)+T4 mm ²	3x16

1.2 - QDLF

	Quadro de Dimensionamento dos Circuitos e Proteção - QDLF																	
Circuito	Descrição	Tensão (V)	Potência Total (W)	Fator de Potência	Isolação do cabo	Tipo de Condutor	FCT x FCA	Método de instalação	Seção por Critério Iz (mm²)	Seção por Critério ΔV (mm²)	Seção Adotada (mm²)	Iz(A)	Iz'(A)	Dist.(m)	In (A)	ΔV(%)	Condutor(mm²)	Disjuntor (A)
2.1	ILUMINAÇÃO INTERNA	220	60	0,95	PVC	CU	0,87	B1	0,5	0,5	2,5	24	20,88	15	0,29	0,03	3#2,5(2,5)+T2,5 mm ²	2 1x10
2.2	TOMADA TUG	220	300	0,85	PVC	CU	0,87	B1	0,5	0,5	2,5	24	20,88	5	1,6	0,05	3#2,5(2,5)+T2,5 mm ²	1x10
2.3	EXAUSTORES	220	279	0,95	PVC	CU	0,87	B1	0,5	0,5	2,5	24	20,88	10	1,33	0,09	1#2,5(2,5)+t2,5mm ²	1x10
2.4	RESERVA	220	500															1X10
	Alimentador QDLF	380	1139	0,91	PVC	CU	0,87	B1	0,5	0,5	2,5	21	18,27	4	1,9	0,02	3#2,5(2,5)+T2,5 mm ²	3x10

ART

Anotação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977

CREA-CE

ART OBRA / SERVIÇO -REGISTRO ANTES DO TÉRMINO DA OBRA/SERVIÇO Nº CE20160083738

Conselho Regional de Engenharia e Agronomia do Ceará

INICIAL INDIVIDUAL

1. Responsável Téci	nies			
MARCOS LENO FERREIR				
	NHEIRO ELETRICISTA - ELETROTECNICA	. TECNICO EM ELETRICIDADE	RNP: 061340412-2	
A seconomoran				
2. Contratante	IA DE ÁGUA E ESGOTO DO CEARÁ		CDE/CND II AZ A49 4	20/2004 57
RUA DR. LAURO VIEIRA O	[10] 전 (10] (10] (10] (10] (10] (10] (10] (10]		CPF/CNPJ: 07.040.1	38/0001-57
Complemento:	HAVES 1030	Deimo AEDODODTO	Nº: 1030	
Cidade: FORTALEZA		Bairro: AEROPORTO UF: CE	CED. 60400000	
País: Brasil		OF; GE	CEP: 60420280	
Telefone: 31011794	Email: aantil mala@aaaa			
Contrato: Não especificad	Email: gentil.maia@cageco c Celebrado em:	e.com.br		
Valor: R\$ 4.622.46	784 (T. 1837) P. S. B.	SOA JURIDICA DE DIREITO PR	WADO	
Ação Institucional: NENHI	아이라고 하는 것 같아요 하는 아이를 하는데 나를 하는데 나를 하는데 살아보고 있다면 하는데 나를 하는데 되었다.	SOA JURIDICA DE DIREITO PR	IVADO	
Ação institucional. NENTI	SMA - NAO OF TANTE			
3. Dados da Obra/Se				
- 1 [전기] 김 전 경우 경영경원 및 [14] 및 공급	IA DE ÁGUA E ESGOTO DO CEARÁ		CPF/CNPJ: 07.040.10	8/0001-57
AVENIDA JOSÉ NICODEM	OS ASSUNÇÃO		Nº: S/Nº	
Complemento:		Bairro: AQUIRAZ		
Cidade: Aquiraz		UF: CE	CEP: 61700000	
Telefone: 31011794	Email: gentil.maia@cagec	e.com.br		
	: Latitude: 0 Longitude: 0			
Data de Início: 30/07/2016	7.J.S	9/2016		
Finalidade: Saneamento b	ásico			
4. Atividade Técnica				CC-2
A1 - ATUAÇÃO			Quantidade	Unidade
38 - ORÇAMEN <mark>TO</mark> ELETROTÉCNICA APLI	> RESOLUÇÃO 1025 -> OBRAS E CADA -> REDE ELÉTRICA -> #1802 - INDUS	SERVIÇOS - ELÉTRICA -> STRIAL - BAIXA TENSÃO	1,00	un
6 - PROJETO BÁSIC ELETROTÉCNICA APLI	O > RESOLUÇÃO 1025 -> OBRAS E CADA -> REDE ELÉTRICA -> #1802 - INDUS	SERVIÇOS - ELÉTRICA -> STRIAL - BAIXA TENSÃO	1,00	un
38 - ORÇAMENTO ELETROTÉCNICA APLI	> RESOLUÇÃO 1025 -> OBRAS E CADA -> #1850 - AUTOMAÇÃO	SERVIÇOS - ELÉTRICA ->	1,00	un
ELETROTÉCNICA APLI	O > RESOLUÇÃO 1025 -> OBRAS E CADA -> #1850 - AUTOMAÇÃO		1,00	un
ELETROTECNICA APLI	> RESOLUÇÃO 1025 -> OBRAS E CADA -> #1851 - SISTEMA DE CONTROLE I	ELÉTRICO	1,00	un
6 - PROJETO BÁSIC ELETROTÉCNICA APLI	O > RESOLUÇÃO 1025 -> OBRAS E CADA -> #1851 - SISTEMA DE CONTROLE I	SERVIÇOS - ELÉTRICA -> ELÉTRICO	1,00	un
"	Após a conclusão das atividades técnicas o	profissional deverá proceder a ba	aixa desta ART	
5. Observações				
PROJETO DE AUTOMAÇÃO	D E INSTALAÇÕES ELÉTRICAS EM BAIXA T E PESQUISAS EM REÚSO - CPR, DA CAGE	TENSÃO DO TANQUE DE SATU ECE EM AQUIRAZ-CEARÁ.	RAÇÃO UTILIZADO PELO S	ISTEMA DE
6. Declarações				
7. Entidade de Class	e			
NENUIMA NÃO OPTANT				

Anotação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977

CREA-CE

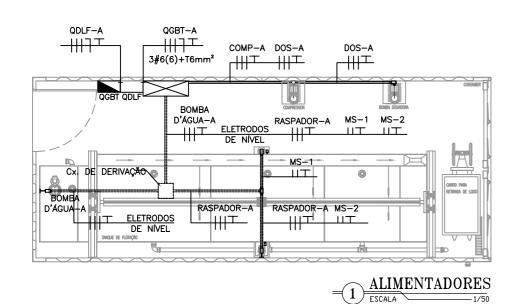
ART OBRA / SERVIÇO -REGISTRO ANTES DO TÉRMINO DA OBRA/SERVIÇO Nº CE20160083738

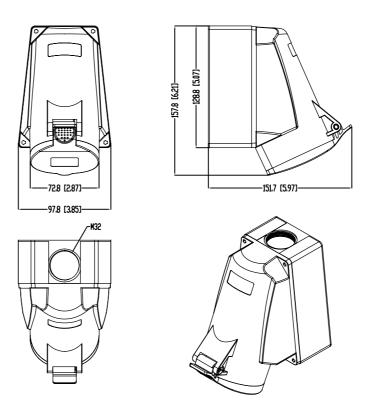
Conselho Regional de Engenharia e Agronomia do Ceará

INICIAL INDIVIDUAL

8. Assinaturas Declaro serem verdadeiras			MARCOS LENO FERREIRA POMPEU - CPF: 549,010,813-49 Enga Cailiny Mediciros
Local 9. Informações	de Julio	de_ <i>₹01,€</i>	CAGECE - CIA DE NOVA E ESSON O DO CEARA - CNPJ: 07.040.108/0001-57
* A ART é válida somente * Somente é considerada v			rovante do pagamento ou conferência no site do Crea. , quitada, possuir as assinaturas originais do profissional e contratante.
10. Valor Valor da ART: R\$ 74,37	Pago em: 19/0	07/2016	Nosso Número: 8211410331

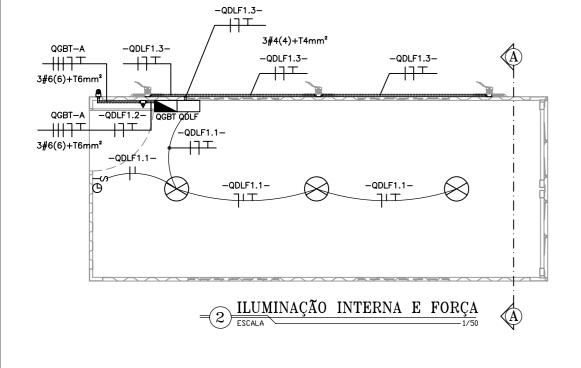
Peças Gráficas

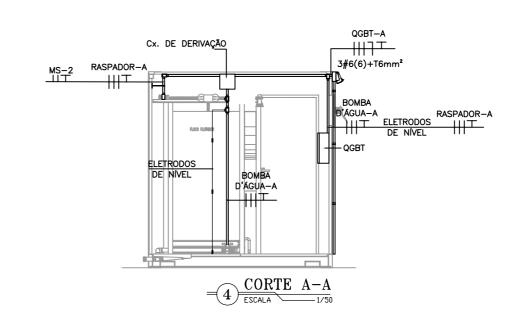

PEÇAS GRÁFICAS


Relação de Plantas:


DESENHO:	PRANCHA:	TÍTULO:
01/01	01/04	Câmara de Expansão do Tanque de Flotação do CPR – Entrada de Energia, Iluminação Interna, Força e Detalhes
01/01	02/04	Câmara de Expansão do Tanque de Flotação do CPR - Corte e Detalhes
01/01	03/04	Câmara de Expansão do Tanque de Flotação do CPR - Aterramento
01/01	03/04	Câmara de Expansão do Tanque de Flotação do CPR – Diagrama Unifilar
01/01	01/14	Diagrama de Potência
01/01	02/14	Diagrama de Potência
01/01	03/14	Diagrama de Comandos
01/01	04/14	Diagrama de Comandos
01/01	05/14	Diagrama de Comandos
01/01	06/14	Diagrama de Comandos
01/01	07/14	Fluxograma P&I e Detalhes
01/01	08/14	CLP e Cartões de Expansão
01/01	09/14	Cartão de Entrada Digital
01/01	10/14	Cartão de Saída Digital
01/01	11/14	Cartão de Entrada Analógica
01/01	12/14	Cartão de Saída Analógica
01/01	13/14	Layout

		01/01	14/14	Layout
--	--	-------	-------	--------



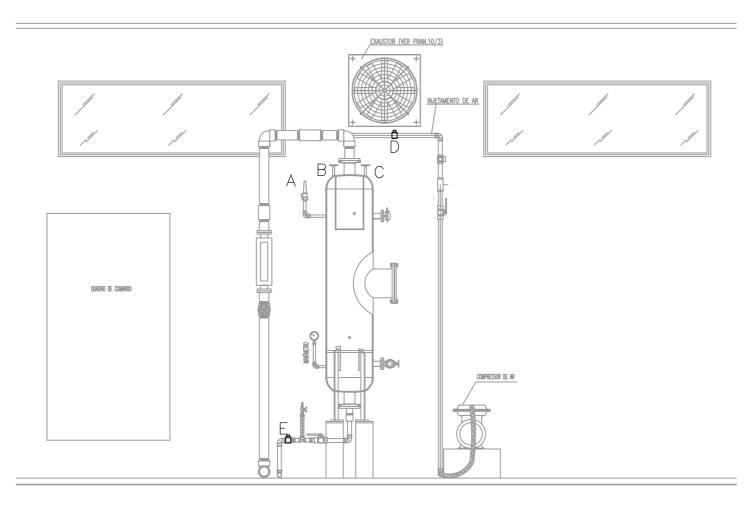


CONDUTORES Ñ COTADOS: #2,5mm² ELETRODUTOS Ñ COTADOS: Ø 3/4

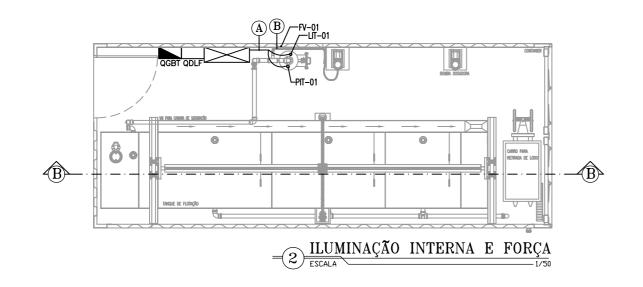
<u>DETALHE DA TOMADA DE ALIMENTAÇÃO GERAL DO CONTAINER</u>

N*	DESCRIÇÃO	DATA	PROJETADO	DESENHADO	
REVISÃO					

GERÊNCIA:	Eng® CAILINY DARLEY DE MENEZES MEDEIROS	10		^ ^	
COORDENAÇÃO:	Eng° RAUL TIGRE DE ARRUDA LEITÃO	ORMATO		43	
PROJETO:	Eng° MARCOS LENO FERREIRA POMPEU	Ĕ			
DESENHO:	ROBERTO PINHEIRO SAMPAIO	ESC	ALA:	INDICADA	
ARQUIVO:	SAA-AQUIRAZ-CPR-DES-ILU_INT-FOR.dwg	DATA	۸:	JUL/16	


COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ
DIRETORIA DE ENGENHARIA
GERÊNCIA DE PROJETOS
COORDENAÇÃO DE PROJETOS TÉCNICOS
_

	DESENHO	PRANCHA N
	01/01	01/04


SISTEMA DE ESGOTAMENTO SANITÁRIO DE AQUIRAZ/CE

PROJETO ELÉTRICO

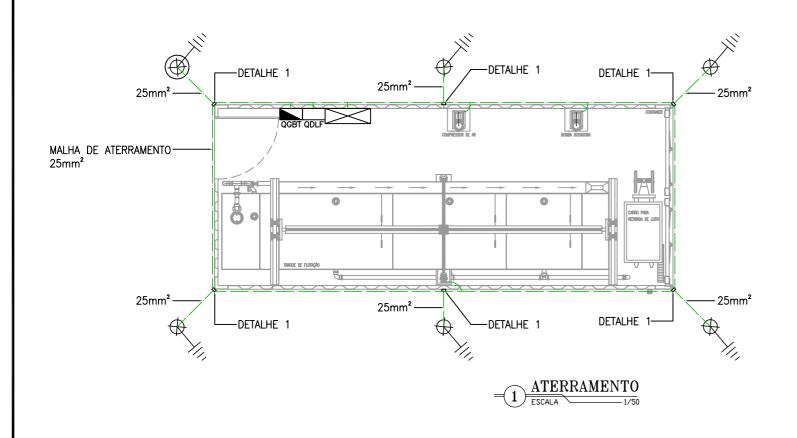
CÂMARA DE EXPANSÃO DO TANQUE DE FLOTAÇÃO DO CPR ENTRADA DE ENERGIA, ILUMINAÇÃO INTERNA, FORÇA E DETALHES

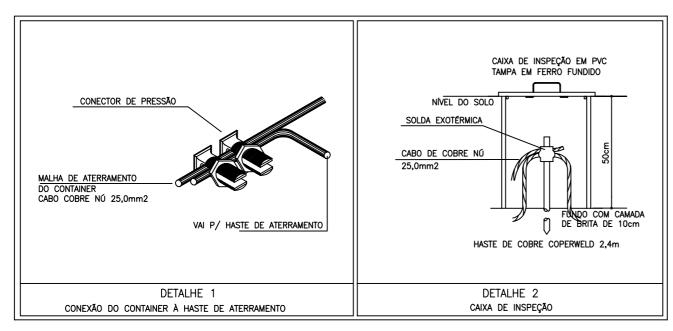
LEGENDA

А	VÁLVULA SOLENOIDE 220VCA
В	INDICADOR E TRANSMISSOR DE PRESSÃO
С	INDICADOR E TRANSMISSOR DE NÍVEL
D	VÁLVULA COM CONTROLE PROPORCIONAL
Е	VÁLVULA COM CONTROLE PROPORCIONAL

TRECHO			
А	LIT-1] T 1#PP3X1,5mm² 1#CB-2X22AWG	PIT-1 II 1#PP3X1,5mm² 1#CB-2X22AWG	ø3/4"
В	FV-1 1#PP3X1,5mm² 1#CB-2X22AWG		ø3/4"

N.	DESCRIÇÃO	I	PROJETADO	DESENHADO		
	REVISÃO					


GERÊNCIA: COORDENAÇÃO:	Eng° CAILINY DARLEY DE MENEZES MEDEIROS Eng° RAUL TIGRE DE ARRUDA LEITÃO	ORMATO		43
PROJETO:	Eng® MARCOS LENO FERREIRA POMPEU	F.		10
DESENHO:	ROBERTO PINHEIRO SAMPAIO	ESC	ALA:	INDICADA
ARQUIVO:	SAA-AQUIRAZ-CPR-DES-ILU_INT-FOR.dwg	DATA	۸:	JUL/16



	PRANCHA N
01/01	02/04

SISTEMA DE ESGOTAMENTO SANITÁRIO DE AQUIRAZ/CE

PROJETO ELÉTRICO CÂMARA DE EXPANSÃO DO TANQUE DE FLOTAÇÃO DO CPR CORTE E DETALHES

ESCALA S/ESC

N.	DESCRIÇÃO	DATA	PROJETADO	DESENHADO							
	REVISÃO										

GERÊNCIA:	Eng° CAILINY DARLEY DE MENEZES MEDEIROS	10		^
COORDENAÇÃO:	Eng [®] RAUL TIGRE DE ARRUDA LEITÃO	ORMATO		4.3
PROJETO:	Eng® MARCOS LENO FERREIRA POMPEU	H.		10
DESENHO:	ROBERTO PINHEIRO SAMPAIO	ESC	ALA:	INDICADA
ARQUIVO:	SAA-AQUIRAZ-CPR-DES-ATE.dwg	DATA	٨:	JUL/16

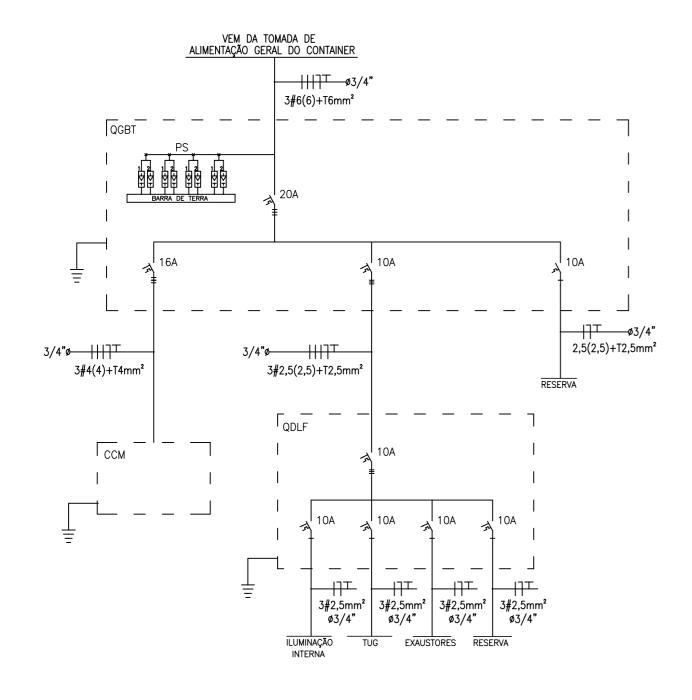
COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS COORDENAÇÃO DE PROJETOS TÉCNICOS

DESENHO	PRANCHA N
01/01	03/04

SISTEMA DE ESGOTAMENTO SANITÁRIO DE AQUIRAZ/CE

PROJETO ELÉTRICO
CÂMARA DE EXPANSÃO DO TANQUE DE FLOTAÇÃO DO CPR
ATERRAMENTO

CABO COBRE NÚ Ñ COTADOS: 6mm²


CABO DE COBRE NÚ

HASTE DE ATERRAMENTO

HASTE DE ATERRAMENTO C/ CAIXA DE INSPEÇÃO

LEGENDA

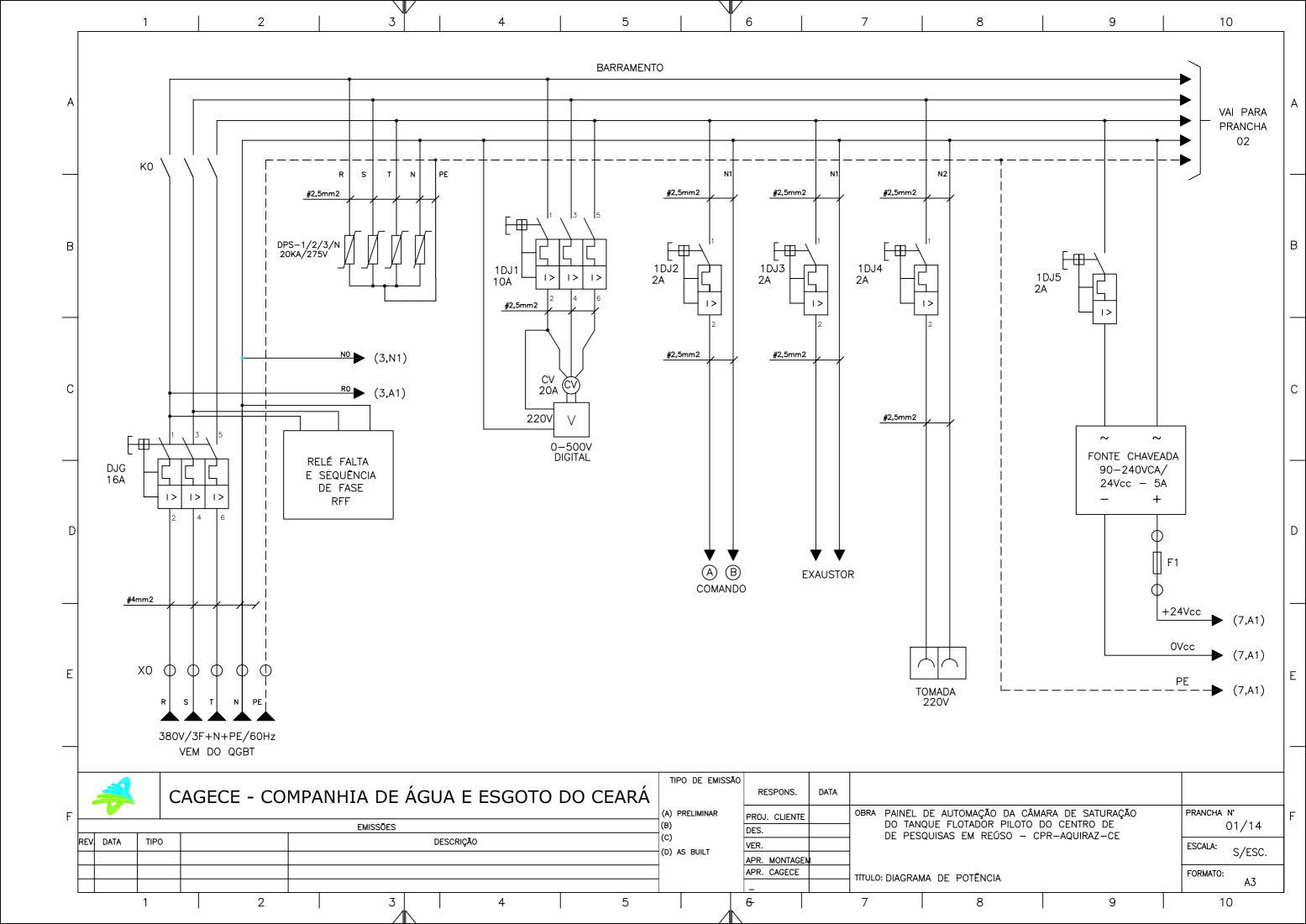
 $\overline{\bigoplus}_{N_{I_{I_{I}}}}$

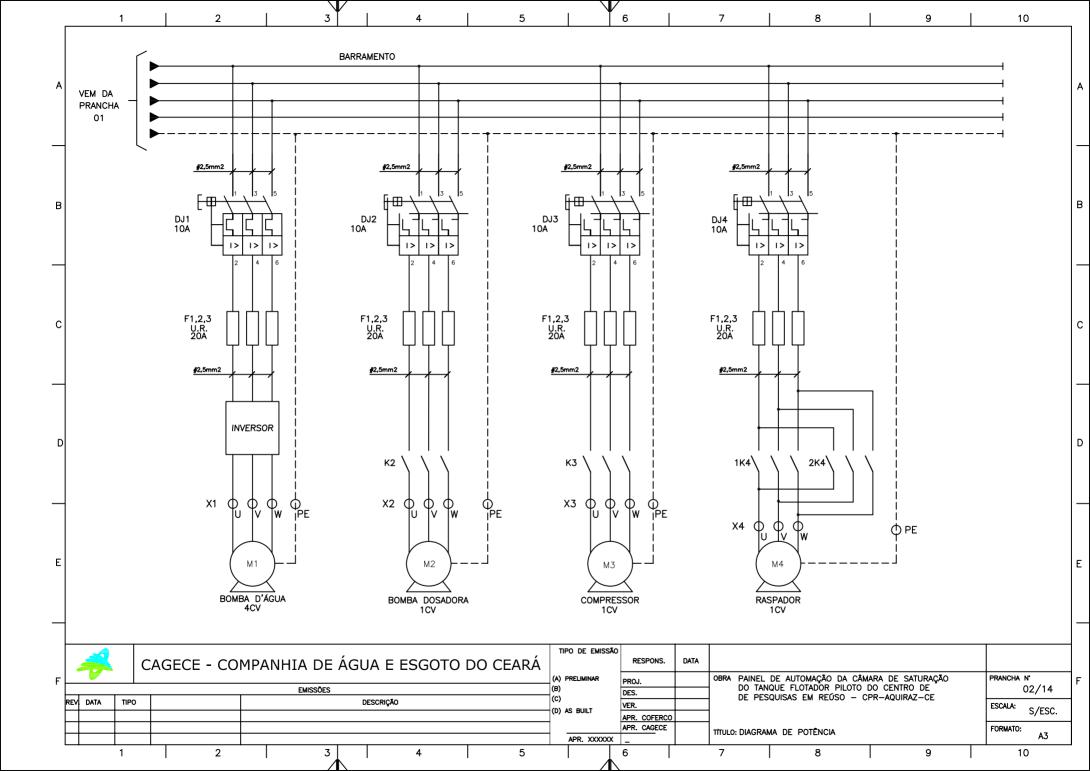
	Quadro de Dimensionamento dos Circultos e Proteção - QGBT																	
Circuito	Descr i ção	Tensão (V)	Potência Total (W)	Fator de Potênc i a	Isolação do cabo	TIpo de Condutor	FCT x FCA	Método de Instalação	Seção por Critério iz (mm²)	Seção por Critério ΔV (mm²)	Seção Adotada (mm²)	Iz(A)	Iz'(A)	Dist (m)	In (A)	ΔV(%)	Condutor(mm²)	Disjuntor (A)
1	CCM	380	5895,92	0,81	PVC	CU	0,87	B1	2,5	0,5	4	28	24,36	4	11,2	0,09	3#4(4)+T4 mm ²	3x16
2	QDLF	380	1139	0,9	PVC	CU	0,87	B1	0,5	0,5	2,5	21	18,27	4	1,9	0,02	2#2,5(2,5)+T2,5 mm ²	3x10
3	RESERVA	220	500															1x10
A	Allmentador QGBT	380	7534,92	0,84	PVC	CU	0,87	B1	2,5	1,5	4	36	31,32	20	13,86	0,38	3#6(6)+T6 mm ²	3x20

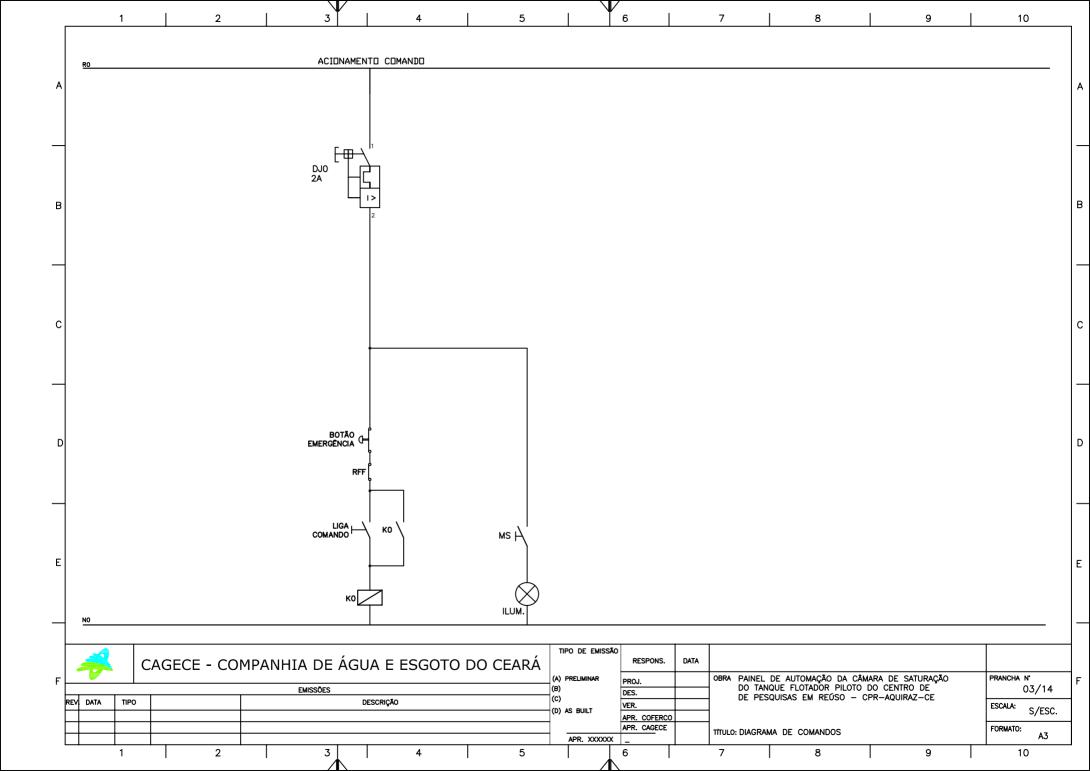
	Quadro de Dimensionamento dos Circultos e Proteção - CCM																	
Circuito	Descr i ção	Tensão (V)	Potência Total (W)	Fator de Potência	Isolação do cabo	Tipo de Condutor	FCT x FCA	Método de Instalação	Seção por Critério iz (mm²)	Seção por Critério ΔV (mm²)	Seção Adotada (mm²)	Iz(A)	iz'(A)	Dist (m)	In (A)	ΔV(%)	Condutor(mm²)	Disjuntor (A)
1.1	BOMBA D'ÁGUA 4CV	380	3546,99	0,8	PVC	CU	0,87	B1	1	0,5	2,5	21	18,27	10	6,74	0,22	3#2,5(2,5)+T2,5 mm ²	3x10
1.2	BOMBA DOSADORA	380	782,98	0,8	PVC	CU	0,87	B1	0,5	0,5	2,5	21	18,27	10	1,49	0,05	3#2,5(2,5)+T2,5 mm ²	3x10
1,3	COMPRESSOR 1CV	380	782,98	0,8	PVC	CU	0,87	B1	0,5	0,5	2,5	21	18,27	10	1,49	0,05	3#2,5(2,5)+T2,5 mm ²	3x10
1,4	RASPADOR 1CV	380	782,98	0,8	PVC	CU	0,87	B1	0,5	0,5	2,5	21	18,27	15	1,49	0,07	3#2,5(2,5)+T2,5 mm ²	3x10
	Allmentador CCM	380	5895,92	0,8	PVC	CU	0,87	B1	2,5	0,5	4	28	24,36	4	11,2	0,09	3#4(4)+T4 mm ²	3x16

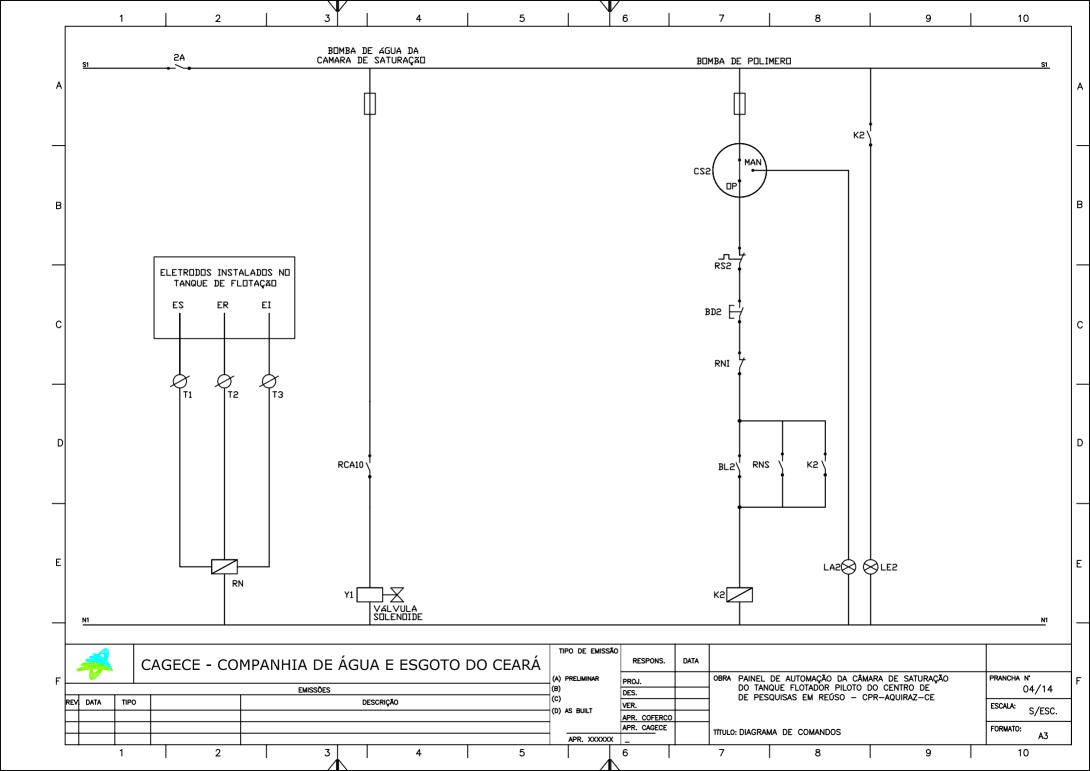
	Quadro de Dimensionamento dos Circuitos e Proteção - QDLF																	
Circuito	Descrição	Tensão (V)	Potênda Total (W)	Fator de Potência	Isolação do cabo	TIpo de Condutor	FCT x FCA	Método de Instalação	Seção por Critério Iz (mm²)	Seção por Critério ΔV (mm²)	Seção Adotada (mm²)	Iz(A)	lz'(A)	Dist.(m)	In (A)	ΔV(%)	Condutor(mm²)	Disjuntor (A)
2.1	ILUMINAÇÃO INTERNA	220	60	0,95	PVC	CU	0,87	B1	0,5	0,5	2,5	24	20,88	15	0,29	0,03	2,5(2,5)+T2,5 mm ²	1x10
2,2	TOMADA TUG	220	300	0,85	PVC	CU	0,87	B1	0,5	0,5	2,5	24	20,88	5	1,6	0,05	2,5(2,5)+T2,5 mm ²	1x10
2,3	EXAUSTORES	220	279	0,95	PVC	CU	0,87	B1	0,5	0,5	2,5	24	20,88	10	1,33	0,09	2,5(2,5)+T2,5 mm ²	1X10
2.4	RESERVA	220	500															1X10
	Allmentador QDLF	380	1139	0,91	PVC	CU	0.87	B1	0,5	0,5	2.5	21	18,27	4	1.9	0.02	3#2,5(2,5)+T2,5 mm2	3x10

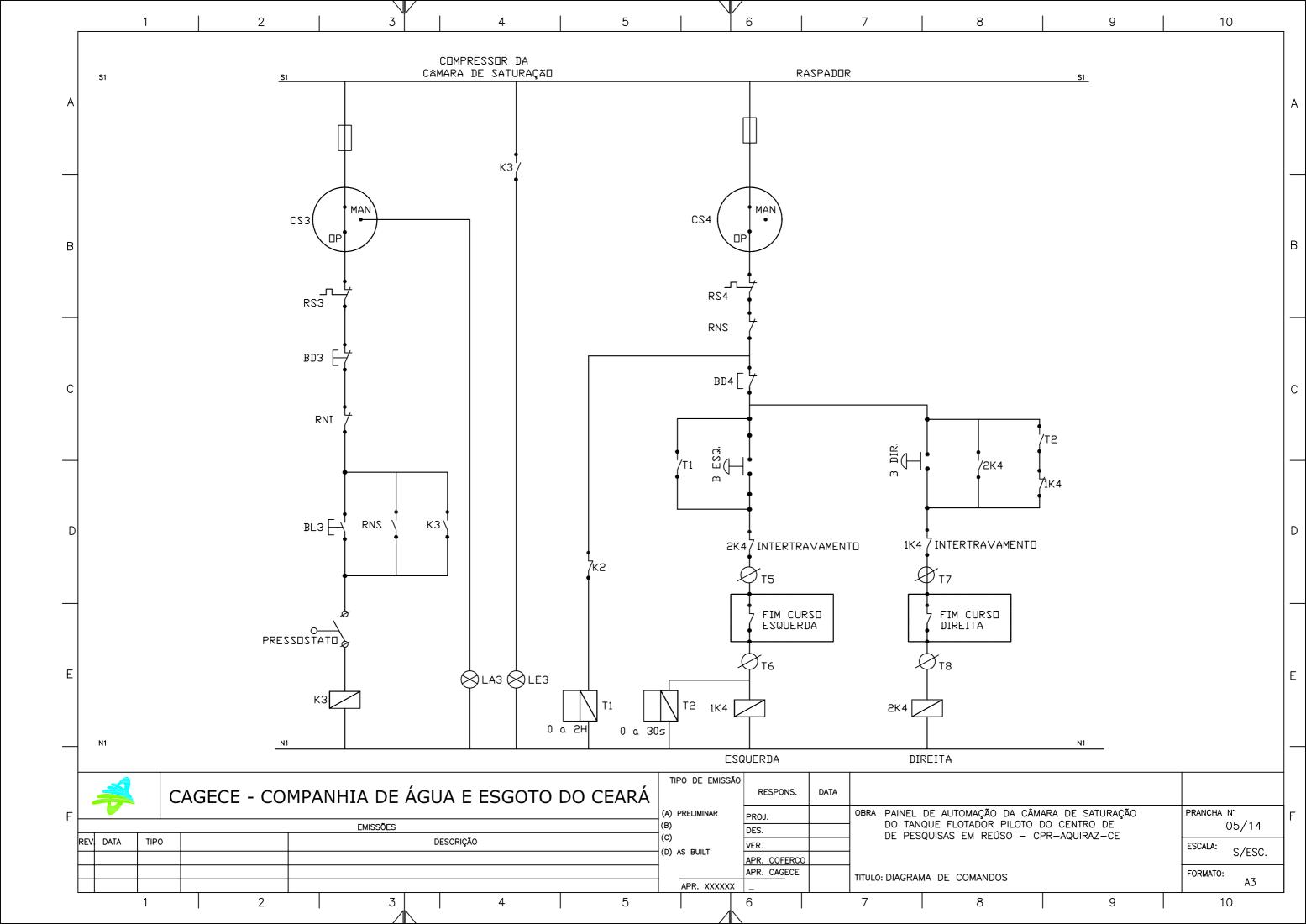
N.	DESCRIÇÃO	DATA	PROJETADO	DESENHADO					
REVISÃO									


GERÊNCIA:	Eng° CAILINY DARLEY DE MENEZES MEDEIROS	ဥ		^	
COORDENAÇÃO:	Eng [®] RAUL TIGRE DE ARRUDA LEITÃO	ORMATO		4.3	
PROJETO:	Eng® MARCOS LENO FERREIRA POMPEU	Ĕ	•	10	
DESENHO:	ROBERTO PINHEIRO SAMPAIO	ESC	ALA:	INDICADA	
ARQUIVO:	SAA-AQUIRAZ-CPR-DES-UNI.dwg	DATA	٨:	JUL/16	




COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS COORDENAÇÃO DE PROJETOS TÉCNICOS DESENHO PRANCHA N° 01/01 04/04


SISTEMA DE ESGOTAMENTO SANITÁRIO DE AQUIRAZ/CE


PROJETO ELÉTRICO CÂMARA DE EXPANSÃO DO TANQUE DE FLOTAÇÃO DO CPR DIAGRAMA UNIFILAR

