Companhia de Água e Esgoto do Ceará

DEN - Diretoria de Engenharia GPROJ - Gerência de Projetos de Engenharia

> Fortaleza - CE Sub-bacia CE-6

Projeto Estrutural do Remanescente do Sistema de Esgotamento Sanitário da Sub-bacia CE-6

> VOLUME VII Projeto Estrutural

Cagece - Companhia de Água e Esgoto do Ceará

DEN - Diretoria de Engenharia GPROJ - Gerência de Projetos

EQUIPE TÉCNICA

Produto: Projeto Estrutural do Remanescente do Sistema de Esgotamento Sanitário da Sub-bacia CE-6

Gerente de Projetos

Enga. Raul Tigre de Arruda Leitão

Coordenação de Projetos Técnicos

Engo. Gerardo Frota Neto

Coordenação de Serviços Técnicos de Apoio

Engº. Bruno Cavalcante de Queiroz

Engenheiro Projetista da ML Engenharia & Projetos

Engo. Carlos Raphael Monteiro Lemos

Engenheiro Analista da GPROJ

Engo. Victor Gurgel Reis

Edição

Janis Joplin Saara Moura Queiroz

Arquivo Técnico

Patrícia Santos Silva

Colaboração

Ana Beatriz Caetano de Oliveira Gleiciane Cavalcante Gomes

I - APRESENTAÇÃO

O presente relatório consiste no *Projeto Básico do Remanescente do Sistema de Esgotamento Sanitário da Sub-Bacia CE-6*, integrante do Programa SANEAR II. O projeto original foi elaborado em 2005 pela empresa VBA Tecnologia e Engenharia S/A e foi adequado pela Cagece em 2008.

O projeto em questão já contempla às alterações na Av. Alberto Craveiro e na Av. Paulino Rocha.

No projeto em questão, também foi considerada a execução das estações elevatórias 2 e 3 nas áreas onde funcionam hoje ETE's do tipo Decanto Digestor, sem afetar a funcionalidade desse tratamento até a finalização, de pelo menos, do sistema de bombeamento e que a rede desta sub-bacia já esteja em funcionalidade. Foi considerada também, a desativação destes Decantos Digestores, contemplando esgotamento, aterro, demolição das estruturas externas e urbanização, viabilizando a execução total das estações elevatórias.

Portanto, este descritivo apresenta detalhadamente o remanescente com as adequações realizadas na Rede Coletora e Estações Elevatórias, integrantes do Sistema de Esgotamento Sanitário da bacia CE-6, embora a maior parte do sistema seja original da VBA. Este projeto será apresentado em 7 (sete) volumes assim organizados:

- VOLUME I Relatório Geral, Memória de Cálculo e Desapropriação.
- VOLUME II Peças Gráficas:
 - TOMO I;
 - TOMO II.
- VOLUME III Projeto Elétrico.
- VOLUME IV Relatório de Sondagem:
 - TOMO I;
 - TOMO II.
- VOLUME V Orçamento.
- VOLUME VI Especificações Técnicas.
- VOLUME VII Projeto Estrutural.

Memória de Cálculo EE-02

MEMORIA DE CÁLCULO - EE-02

Serra/ES

31 de Maio de 2019

1.1 OBJETIVO

Este presente trabalho visa desenvolver o projeto estrutural da EE-02.

1.2 DOCUMENTOS DE REFERÊNCIA

Os documentos relacionados foram utilizados na elaboração deste documento ou contêm instruções e procedimentos aplicáveis a ele. Devem ser utilizados na sua revisão mais recente:

10-13.35 SES-BACIA CE6 EE-02 01-04.10 ARQ

1.3 INTRODUÇÃO

O presente trabalho complementa as pranchas de armação e formas relativas à: estação elevatória EE-02.

O dimensionamento dos elementos citados fora executado tomando como base as normas que seguem:

- NBR 6118 Projeto de estruturas de concreto Procedimentos
- NBR 6120 Cargas para o cálculo de estruturas de edificações
- NBR 6122 Projeto e execução de fundações
- NBR 6123 Força devidas ao vento em edificações
- NBR 8681:2003 Ações e segurança nas estruturas Procedimentos.

Documentos técnicos e livros como:

- Resistência do Materias, V. Feodosiev
- Curso de Concreto Armado, José Milton de Araújo

Além dos softwares de dimensionamento e análise hiperestática: STRAP 2011

1.4 CARACTERÍSTICAS GERAIS DO PROJETO

- Fck: 40 MPa
- Fator água-cimento: 0.45 (máximo)
- Aço CA 50 e CA 60
- Es: 210 GPa
- Deformação limite do aço para dimensionamento: 10%.
- Grau de agressividade do Meio Ambiente: IV (NBR 6118/2014)
- Limite de abertura de Fissuras ≤ 0.2 mm
- Dimensão máxima do agregado graúdo: 25 mm
- Método para análise de 2° Ordem Global: Gama Z
- Compactação com Proctor normal à 100%
 - Classe de Agressividade Ambiental NBR6118:2014

Classe de agressividade ambiental	Agressividade	Classificação geral do tipo de ambiente para efeito de projeto	Risco de deterioração da estrutura	
2347	France	Rural	Insignificante	
218	Fraca	Submersa	magrinicarite	
ĬĬ	Moderada	Urbana a, b	Pequeno	
420	17/ A.A.	Marinha ^a		
111	Forte	Industrial a, b	Grande	
n/	Muito forte	Industrial ^{a, c}	Elauada	
IV	wuno iorte	Respingos de maré	Elevado	

- Pode-se admitir um microclima com uma classe de agressividade mais branda (uma classe acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura).
- Pode-se admitir uma classe de agressividade mais branda (uma classe acima) em obras em regiões de clima seco, com umidade média relativa do ar menor ou igual a 65 %, partes da estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde raramente chove.
- ⁶ Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas.
- Cobrimento de acordo com a Classe de Agressividade Ambiental NBR6118:2014

		Classe de a	agressividade	ambiental (T	abela 6.1
Tipo de estrutura	Componente ou	Ĭ	П	Ш	IN c
	elemento	Cobrimento nominal mm			
	Laje ^b	20	25	35	45
	Viga/pilar	25	30	40	50
Concreto armado	Elementos estruturais em contato com o solo ^d	.3	30	40	50
Concreto protendido ^a	Laje	25	30	40	50
	Viga/pilar	30	35	45	55

- a Cobrimento nominal da bainha ou dos fios, cabos e cordoalhas. O cobrimento da armadura passiva deve respeitar os cobrimentos para concreto armado.
- b Para a face superior de lajes e vigas que serão revestidas com argamassa de contrapiso, com revestimentos finais secos tipo carpete e madeira, com argamassa de revestimento e acabamento, como pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos e outros, as exigências desta Tabela podem ser substituídas pelas de 7.4.7.5, respeitado um cobrimento nominal ≥ 15 mm.
- Nas superfícies expostas a ambientes agressivos, como reservatórios, estações de tratamento de água e esgoto, condutos de esgoto, canaletas de efluentes e outras obras em ambientes química e intensamente agressivos, devem ser atendidos os cobrimentos da classe de agressividade IV.
- d No trecho dos pilares em contato com o solo junto aos elementos de fundação, a armadura deve ter cobrimento nominal ≥ 45 mm.
- Limite de Abertura de Fissuras de acordo com a Classe de Agressividade Ambiental NBR6118:2014

Tabela 13.4 – Exigências de durabilidade relacionadas à fissuração e à proteção da armadura, em função das classes de agressividade ambiental

	ACC SEC	A. O		
Tipo de concreto estrutural	Classe de agressividade ambiental (CAA) e tipo de protensão	ambiental (CAA) e tipo relativas		
Concreto simples	CAA I a CAA IV	Não há	1 tan	
	CAAI	ELS-W <i>w</i> _k ≤ 0,4 mm	Combinação frequente	
Concreto armado	CAA II e CAA III	ELS-W $w_k \le 0.3 \text{ mm}$		
	CAA IV	ELS-W $w_k \le 0.2 \text{ mm}$		
Concreto protendido nível 1 (protensão parcial)	Pré-tração com CAA I ou Pós-tração com CAA I e II	ELS-W <i>w</i> _k ≤ 0,2 mm	Combinação frequente	
Concreto	Pré-tração com CAA II	Verificar as duas condições abaixo		
protendido nível 2	ou	ELS-F	Combinação frequente	
(protensão limitada)	Pós-tração com CAA III e IV	ELS-D a	Combinação quase permanente	
Concreto	NAME OF THE PARTY	Verificar as dua	s condições abaixo	
protendido nível 3 (protensão completa)	Pré-tração com CAA III e IV	ELS-F	Combinação rara	
		ELS-Da	Combinação frequent	

a A critério do projetista, o ELS-D pode ser substituído pelo ELS-DP com a_p = 50 mm (Figura 3.1). NOTAS

Fator Água-Cimento de acordo com a Classe de Agressividade Ambiental NBR6118:2014

Tabela 7.1 - Correspondência entre a classe de agressividade e a qualidade do concreto

¥V. 9	Tipo b, c	Classe de agressividade (Tabela 6.1)					
Concreto a	Tipo 5,5	1	П	Ш	IV		
Relação água/cimento em massa	CA	≤ 0,65	≤ 0,60	≤ 0,55	≤ 0,45		
	CP	≤ 0,60	≤ 0,55	≤ 0,50	≤ 0,45		
Classe de concreto (ABNT NBR 8953)	CA	≥ C20	≥ C25	≥ C30	≥ C40		
	CP	≥ C25	≥ C30	≥ C35	≥ C40		

^a O concreto empregado na execução das estruturas deve cumprir com os requisitos estabelecidos na ABNT NBR 12655.

> Dimensão máxima do agregado graúdo - NBR6118:2014

¹ As definições de ELS-W, ELS-F e ELS-D encontram-se em 3.2.

² Para as classes de agressividade ambiental CAA-III e IV, exige-se que as cordoalhas não aderentes tenham proteção especial na região de suas ancoragens.

³ No projeto de lajes lisas e cogumelo protendidas, basta ser atendido o ELS-F para a combinação frequente das ações, em todas as classes de agressividade ambiental.

CA corresponde a componentes e elementos estruturais de concreto armado.

CP corresponde a componentes e elementos estruturais de concreto protendido.

7.4.7.6 A dimensão máxima característica do agregado graúdo utilizado no concreto não pode superar em 20 % a espessura nominal do cobrimento, ou seja:

 $d_{\text{máx}} \leq 1.2 c_{\text{nom}}$

2.0 MODELO DE CÁLCULO

Laje de piso do reservatório apoiado sobre base elástica. O campo de deslocamentos e tensões foi calculada adotando-se a metodologia implementada pelo software comercial STRAP VERSÃO 2011.

CARGAS E COMBINAÇÕES

Ações Permanentes:

- g1 Peso próprio do concreto (permanente direta)
- g2 Empuxo de terra (permanente direta)
- q1 Água

Ações Variáveis Acidentais:

• q2 - Sobrecarga

Coeficientes de ponderação (γg , γq), fatores de combinação (ψq), e fatores de redução ($\psi 1$, $\psi 1$) para:

- Combinação Normal (CN) em Estado Limite de Utilização (ELU);
- Combinação Quase Permanente (CQP) em Estado Limite de Serviço (ELS);
- Combinação Frequente (CF) em Estado Limite de Serviço (ELS).

	CN-ELU	CQP-ELS	CF-ELS
Ações Permanentes:	γg	γg	γg
Cargas permanentes	1,4	1	1
Retração	1,2	1	1
Ações Variáveis (qdo. princ.):	γq	γq	γq
Sobrecarga	1,4	1	1
Empuxo hidrostático	1,4	1	1
Gradiente térmico	1,2	1	1
Ações Variáveis (qdo. secnd.):	ψ0	ψ1	ψ2
Sobrecarga	0,8	0,7	0,6
Empuxo hidrostático	0,8	0,7	0,6
Gradiente térmico	0,6	0,5	0,3

Grandezas Físicas das Ações:

- g1 Peso próprio do concreto = Volume dos elementos multiplicado pelo peso específico do concreto armado. Unidades: peso em tf e o volume em m³.
- g2 -Empuxo de terra

Argila com areia fina cor variegada

 $\gamma t = 18,00 \text{ kN/m}^3 \text{ Godoy}, 1972$

 $\phi = 0^{\circ}$ K0 = 1.00 K0 = 1 - sen ϕ

 $p = K0.\gamma t.h$

- g3 Enchimentos = Volume do elemento multiplicado pelo peso específico do material. Unidades: peso em tf e volume em m³.
- g4 Retração: Não Consideramos uma retração em toda a estrutura
- q1 Empuxo Hidrostático interno: Em todas as faces internas estão sendo aplicada uma pressão de base ao topo. O peso específico utilizado no cálculo destas pressões é o da água, igual a 1tf/m³ multiplicado pela altura da lamina d'água.
- q2 Sobrecarga: Nas lajes de tampa e escadas foram consideradas sobrecargas de utilização iguais a 0,3 tf/m².
- q3 gradiente térmico: Não foi considerado, as estruturas estão enterradas e as partes expostas tem pequenas dimensões e em consequência as deformações devido ao gradiente térmico são insignificantes.

Combinações:

Estado Limite Último - ELU-CN (cheio):

C01 = 1,40.(g1+g3)+g2+1,40.q1+1,20.q2

C02 = 1,40.(g1+g3)+g2+1,40.q2+1,20.q1

Estado Limite Último - ELU-CN (vazio):

C03 = 1,40.(g1+g2+g3)+1,40.q2

Estado Limite de Serviço ELS-CF (cheio)

C05 = 1,00.(g1+g2+g3)+0,70.q1+0,60.q2

C06 = 1,00.(g1+g2+g3)+0,70.q2+0,60.q1

Estado Limite de Serviço ELS-CF (vazio)

C07 = 1,00.(g1+g2+g3)+0,70.q2

Especial, para verificação da flutuação

C08 = 1,00.(g1+g3)+1,00.q4

2.1 DIMENSIONAMENTO DAS SEÇÕES

Os cálculos de paredes e lajes de fundo e tampas foram considerados um elemento estrutural de 100 cm de largura e altura h, para o dimensionamento a flexo-tração com a força da envoltória máxima nas direções x e y e momentos da envoltória máxima e mínima nas direções x e y. A compressão aqui foi desprezada por entender que a solicitação máxima acontece quando o elemento estrutural em questão é tracionado junto com a flexão.

Após a verificação da flexo-tração o elemento foi verificado com relação à formação de fissuras.

Momento mínimo para a dispensa de análise de fissuração (ESTÁDIO I e II):

$$M_R = a f_{ct} I_o / y_t [tf. m]$$
(1)

Calculando teremos, M_r para um fck = 40 MPa e h variado igual à:

- h=15cm; M_r = 2.60tf.m
- h=20cm; $M_r = 3,46tf.m$

Armadura mínima prevista em norma:

$$A_{s,min} = \rho_{min} 100h \left[\frac{cm^2}{m}\right] \tag{2}$$

Sendo ho_{min} taxa de armadura mínima conforme a NBR 6118:2003

Farma da sassa		Valores de ρ _{min} ¹⁾ (A _{s,min} /A _c)								
Forma da seção	f _{ck} ω _{min}	20	25	30	35	40	45	50		
Retangular	0,035	0,150	0,150	0,173	0,201	0,230	0,259	0,288		
T (mesa comprimida)	0,024	0,150	0,150	0,150	0,150	0,158	0,177	0,197		
T (mesa tracionada)	0,031	0,150	0,150	0,153	0,178	0,204	0.229	0,255		
Circular	0,070	0,230	0,288	0,345	0,403	0,460	0,518	0,575		

 $^{^{11}}$ Os valores de $ρ_{min}$ estabelecidos nesta tabela pressupõem o uso de aço CA-50, $γ_c$ = 1,4 e $γ_s$ = 1,15. Caso esses fatores sejam diferentes, $ρ_{min}$ deve ser recalculado com base no valor de $ω_{min}$ dado.

Calculando teremos, A_{s,min} para um fck = 40MPa, b=100cm, seção retangular e h variado igual à:

• h=15cm; $A_{s,min} = 2,60 \text{cm}^2/\text{m}$ Ø6.3 C/10 ou Ø8 C/18

• h=20cm; $A_{s,min} = 4,60 \text{cm}^2/\text{m}$ Ø8 C/12 ou Ø10 C/20

2.2 SEÇÕES DE CONCRETO UTILIZADAS

Foram utilizadas as seguintes seções de concreto para as respectivas estruturas:

• Estação elevatória EE-02:

Paredes: 20 cm

Fundo: 20 cm

Tampa: 20cm

2.3 FUNDAÇÃO

Para a estrutura do Reservatório utilizamos a laje de fundo apoiada diretamente sobre o solo. Como modelo de cálculo adotamos um sistema de molas de resposta linear. Para obter a tensão média admissível a partir desse ensaio, utiliza-se o número médio de golpes aplicando a seguinte fórmula:

s = 0.20 * SPT Médio (kgf/m²)

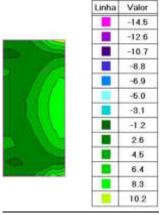
A partir dos valores de tensão média admissível é possível obter o valor de Kv por correlação, utilizando a tabela abaixo:

NOTA - Nas seções tipo T, a área da seção a ser considerada deve ser caracterizada pela alma acrescida da mesa colaborante.

Tensão admissível (kgf/cm²)	Kv (kgf/cm³)	Tensão admissível (kgf/cm²)	Kv (kgf/cm³)
0,25	0,65	2,15	4,30
0,30	0,78	2,20	4,40
0,35	0,91	2,25	4,50
0,40	1,04	2,30	4,60
0,45	1,17	2,35	4,70
0,50	1,30	2,40	4,80
0,55	1,39	2,45	4,90
0,60	1,48	2,50	5,00
0,65	1,57	2,55	5,10
0,70	1,66	2,60	5,20
0,75	1,75	2,65	5,30
0,80	1,84	2,70	5,40
0,85	1,93	2,75	5,50
0,90	2,02	2,80	5,60
0,95	2,11	2,85	5,70
1,00	2,20	2,90	5,80
1,05	2,29	2,95	5,90
1,10	2,38	3,00	6,00
1,15	2,47	3,05	6,10
1,20	2,56	3,10	6,20
1,25	2,65	3,15	6,30
1,30	2,74	3,20	6,40
1,35	2,83	3,25	6,50
1,40	2,92	3,30	6,60
1,45	3,01	3,35	6,70
1,50	3,10	3,40	6,80
1,55	3,19	3,45	6,90
1,60	3,28	3,50	7,00
1,65	3,37	3,55	7,10
1,70	3,46	3,60	7,20
1,75	3,55	3,65	7,30
1,80	3,64	3,70	7,40
1,85	3,73	3,75	7,50
1,90	3,82	3,80	7,60
1,95	3,91	3,85	7,70
2,00	4,00	3,90	7,80
2,05	4,10	3,95	7,90
2,10	4,20	4,00	8,00

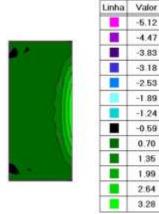
Fonte: Safe, Morrison (1993)

Adotamos uma taxa de solo de 1,0Kgf/cm².



3.0 ESTAÇÃO ELEVATÓRIA DE ESGOTO

3.1 FUNDO



FUNDO - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)

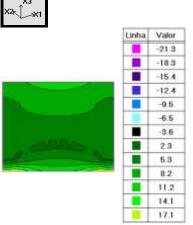
FUNDO – ENVOLTÓRIA DE CARREGAMENTOS MAX – FORÇAS NA DIREÇÃO DE Y (tf/m)

FUNDO - ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE X (tf.m/m)

Linha	Valor
	-1.12
	-0.96
	-0.80
	-0.65
	-0.49
	-0.33
	-0.17
	0.14
	0.30
	0.46
	0.61
	0.77
	0.93

FUNDO – ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE Y (tf.m/m)

			Lajes N	laciças e	m Concr	eto Arn	nado				
Materiais		Esforços		Seção			SE	GURAN	IÇA		
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξmáx.	As,mín (cm²/m)	γc	γs	γf	Classe Agres.
500	40	3,83	8,30	20	5,3	0,4	4,60	1,40	1,15	1,40	Classe IV

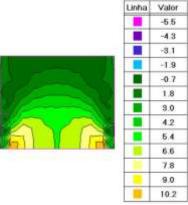

ELU -	Flexão Co	mposta -	Arm. Assin	nétrica			
Armadura no	oossária	Arranjo					
Armadura necessária		Ф (mm)	Esp. (cm)	As,tot (cm²/m			
As1 (cm²/m)	Set	16	12,0	16,76			
As2 (cm²/m)	7,16	16	12,0	16,76			

Resumo - ELU						
Zona	ξ	ω1	ω2			
Zona D	0,150	0,000	0,087			

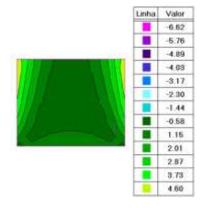
Verifica	ação Fissuras	- LAJES - FLEX	KÃO COMPOST	TA - ARM. SIN	APLES- CO	ONCRETO A	RMADO	
Mat	eriais	Esfo	orços Seção			Esforços		
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)	
500	40	3,83	8,3	20	5,3	16	12,0	
			Cálculo			100	46	
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)	
16,76	210.000	30.105	3,51	2,25	17,30	12,00	207,60	
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)	
6,98	0,009685064	0,367	5,40	145,70	0,00	0,04916809	0,180774821	

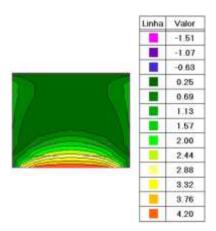
FUNDO – FORÇA E MOMENTO

3.2 PAREDE



PAREDE – ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)





PAREDE - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE Y (tf/m)

PAREDE - ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE X (tf.m/m)

PAREDE – ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE Y (tf.m/m)

			Lajes N	laciças e	m Concr	eto Arn	nado				
Mate	eriais	Esfo	rços		Seção			SE	GURAN	IÇA	
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξmáx.	As,mín (cm²/m)	γο	γs	γf	Classe Agres.
500	40	3,76	9,00	20	5,3	0,4	4,60	1,40	1,15	1,40	Classe IV

ELU -	Flexão Co	mposta -	Arm. Assin	nétrica	
Armadura ne		Arranjo			
Armadura ne	cessaria	Ф (mm)	Esp. (cm)	As,tot (cm²/m)	
As1 (cm²/m)	175	16	12,0	16,76	
As2 (cm²/m)	6,84	16	12,0	16,76	

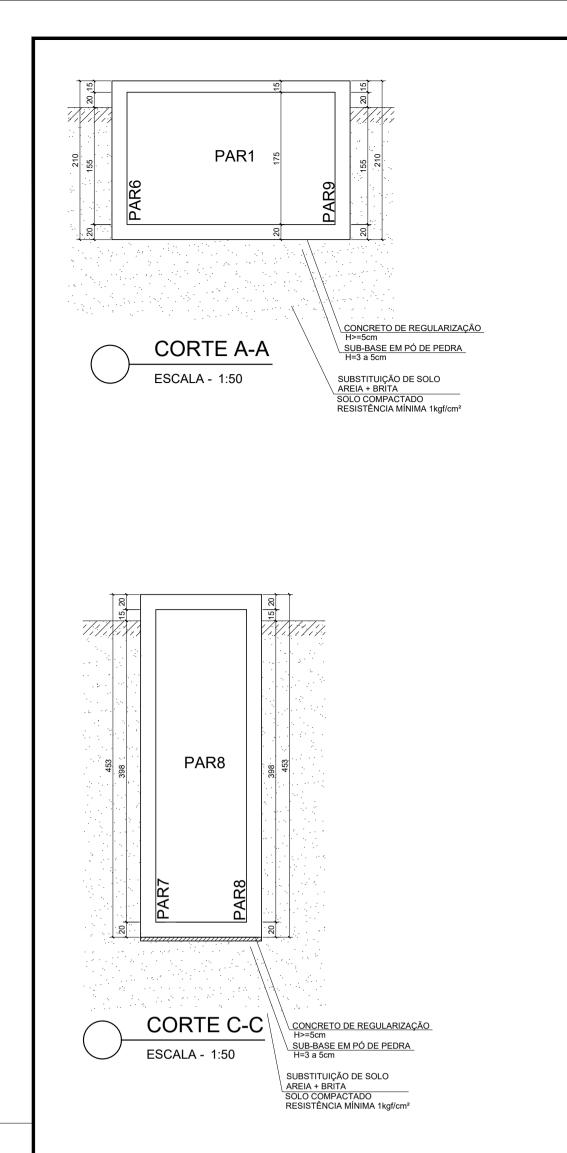
F	Resumo -	ELU	
Zona	ξ	ω1	ω2
Zona D	0,148	0,000	0,083

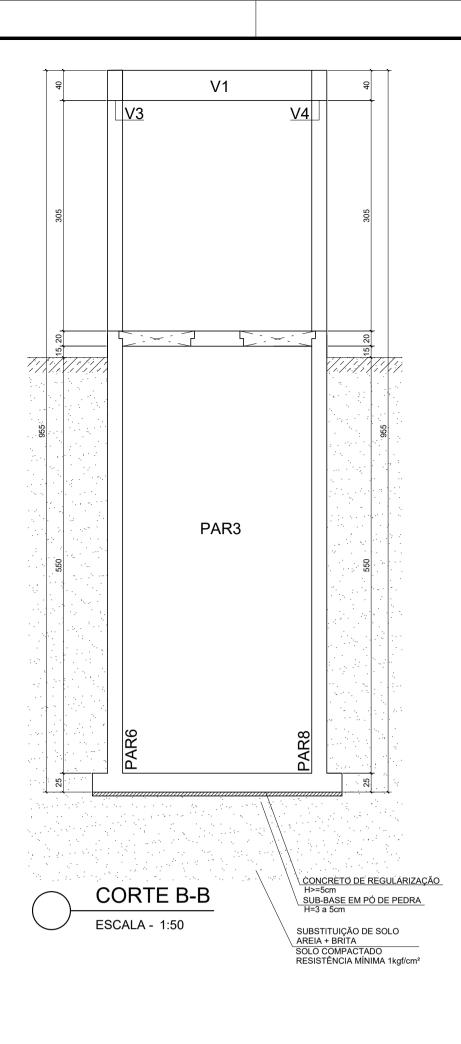
Verifica	ação Fissuras	- LAJES - FLEX	(ÃO COMPOST	TA - ARM. SIN	MPLES- CO	ONCRETO A	RMADO
Mate	Materiais		Esforços		Seção		
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)
500	40	3,76	9	20	5,3	16	12,0
	.,		Cálculo	La sa		No. 20	
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)
16,76	210.000	30.105	3,51	2,25	17,30	12,00	207,60
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)
6,98	0,009685064	0,372	5,46	140,14	0,00	0,04548735	0,173876772

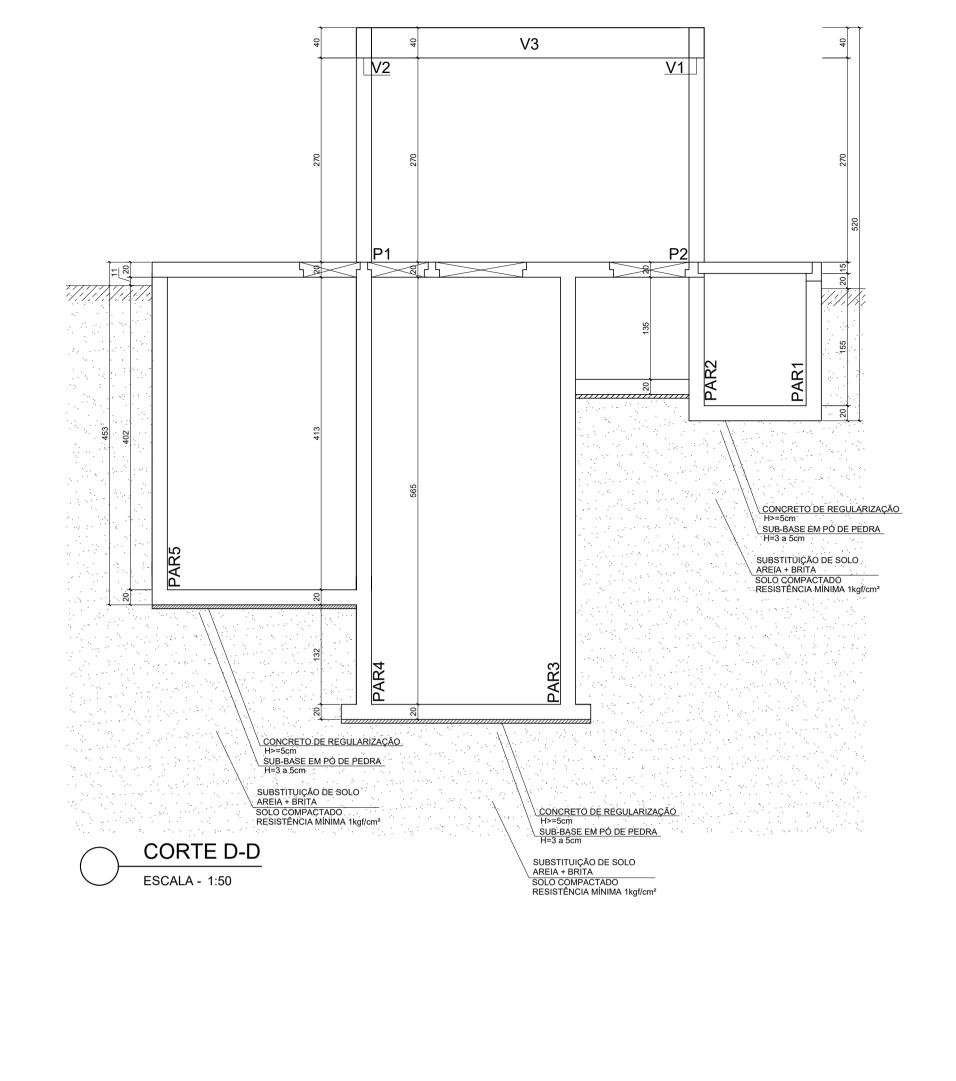
PAREDE – FORÇA E MOMENTO

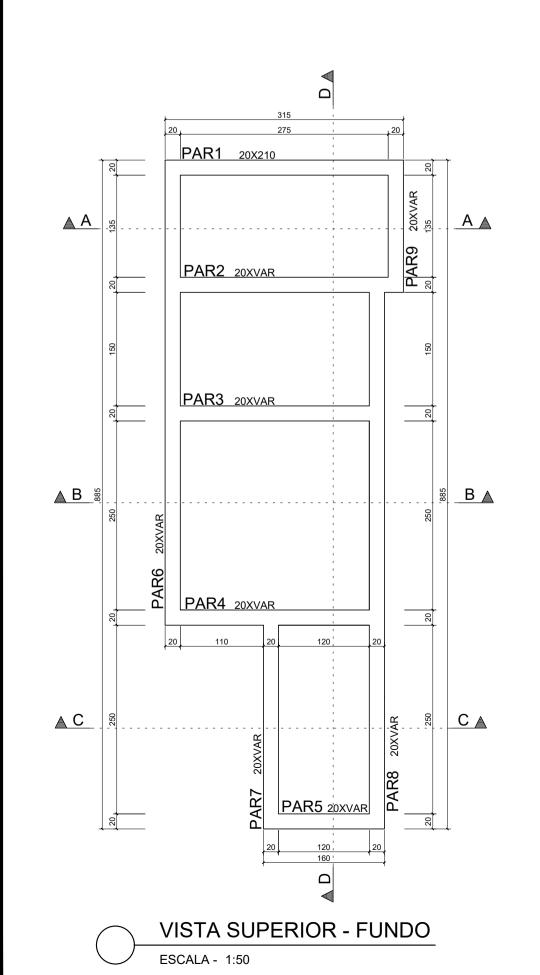
CARLOS RAPHAEL MONTEIRO DE LEMOS

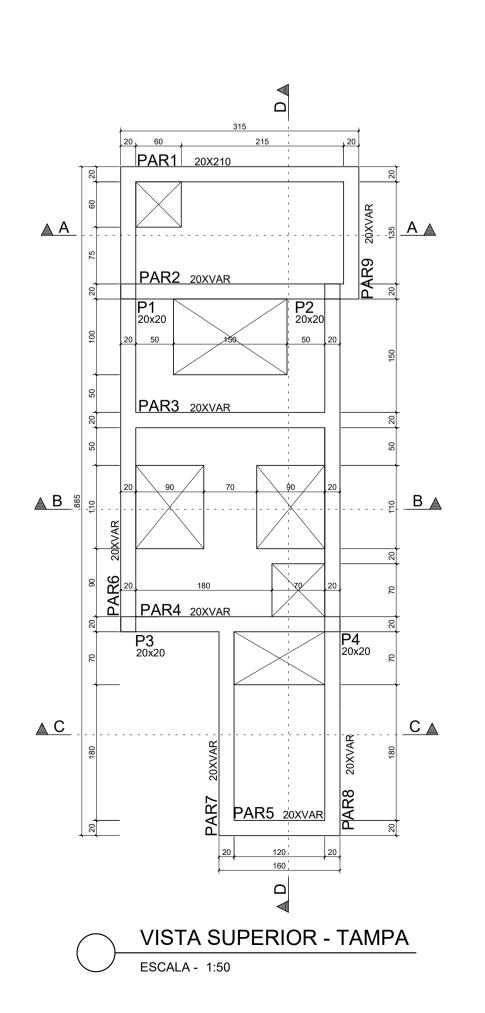
CREA-ES 011840/D

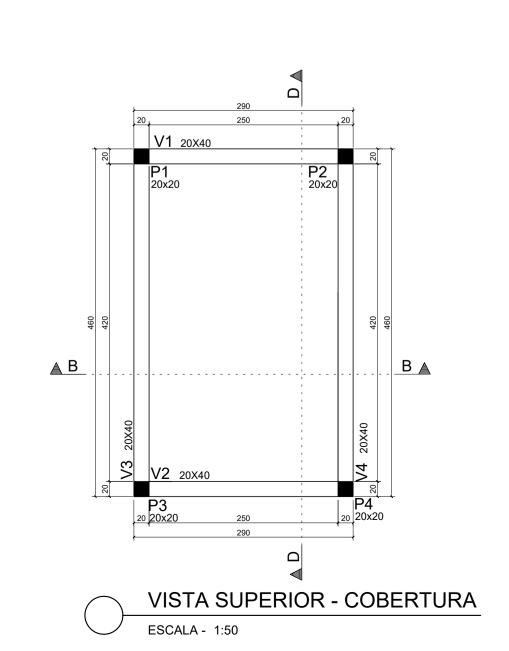

Peças Gráficas

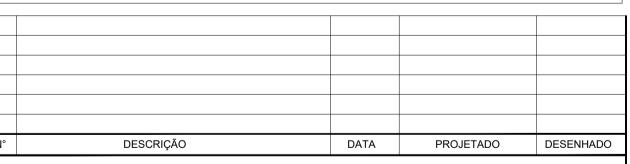



PEÇAS GRÁFICAS


Relação de Plantas:


DESENHO:	PRANCHA:	TÍTULO:
01	01/03	Estação Elevatória EE-02 – Formas e Cortes
01	02/03	Estação Elevatória EE-02 – Armação
01	03/03	Estação Elevatória EE-02 – Armação





QUANTITATIVOS

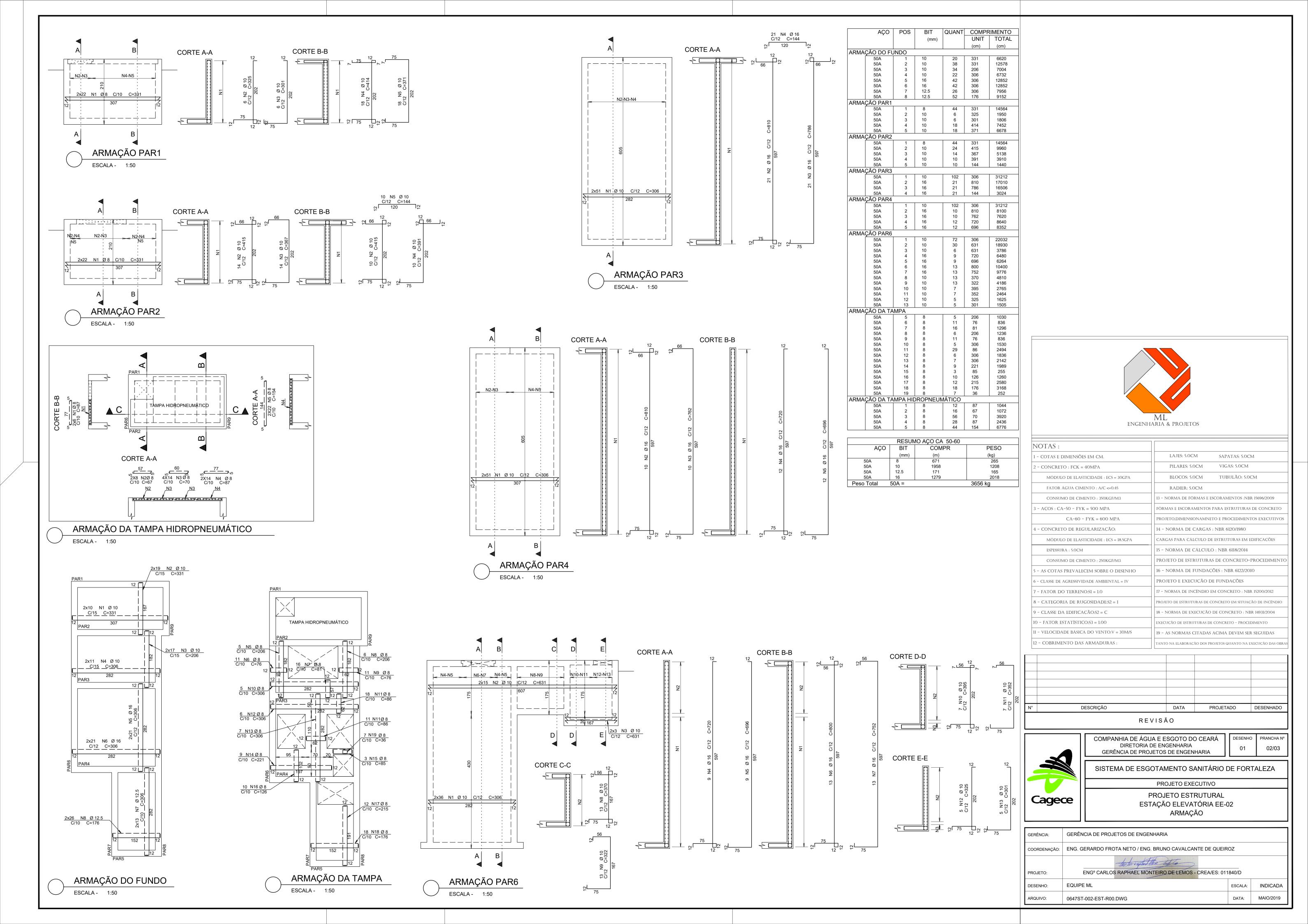
		ELEMENTOS ESTRUTURAIS						
	TAMPA	PAREDES	FUND	VIGAS	PILAR	FUNDO	CAIXAS	TOTAL
ÁREA DE FORMAS (M2)	23.00	259.00	xxx	14.00	10.00	XXX	XXX	306.00
VOLUME DE CONCRETO ESTRUTURAL 40MPA(M3)	5.00	26.00	XXX	1.10	0.50	5.00	XXX	33.10
VOLUME DE CONCRETO SIMPLES 15MPA(M3)	XXX	XXX	XXX	XXX	XXX	1.20	XXX	1.20

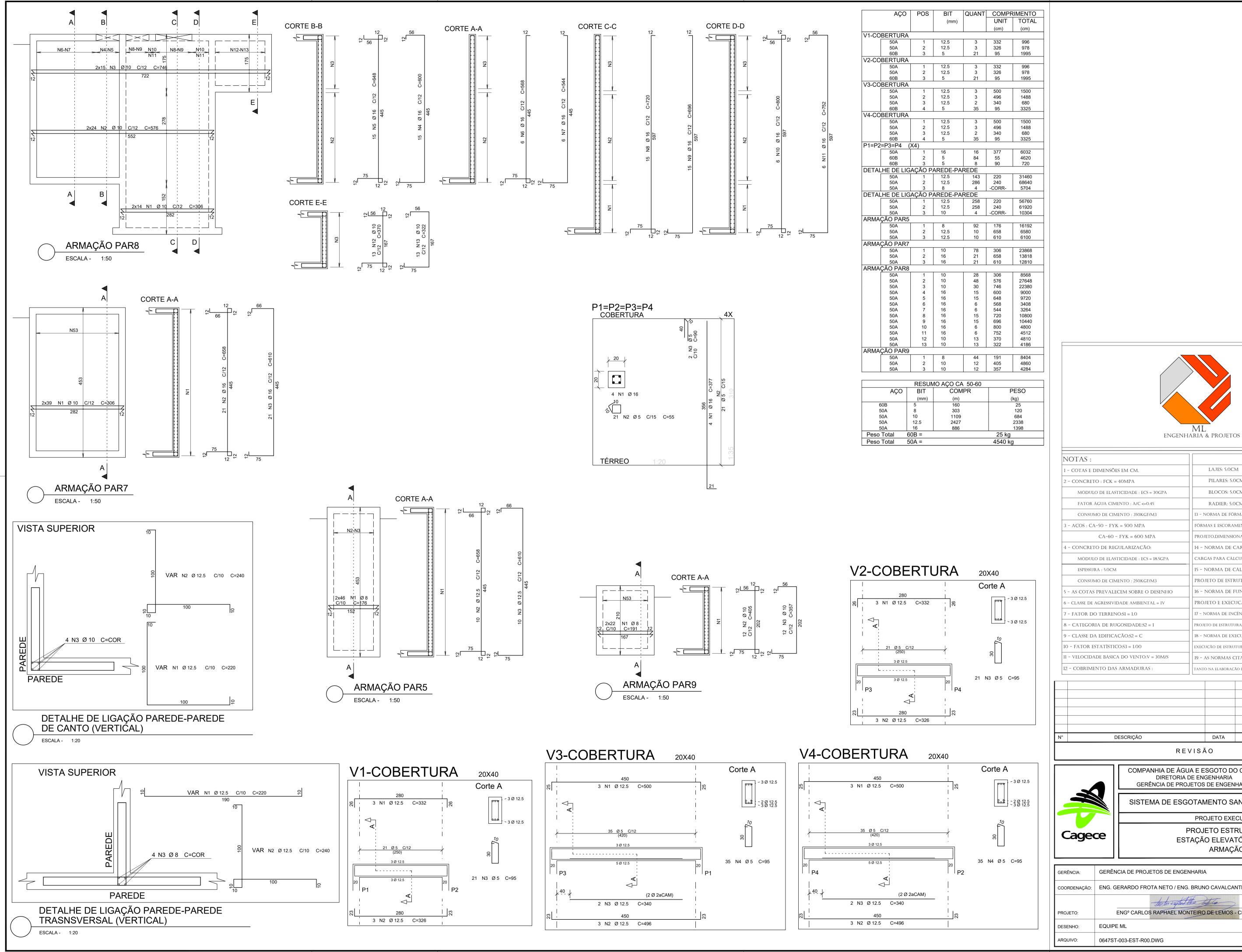
NOTAS :				
1 – COTAS E DIMENSÕES EM CM.	LAJES: 5.0CM SAPATAS: 5.0CM			
2 - CONCRETO : FCK = 40MPA	PILARES: 5.0CM VIGAS: 5.0CM			
MÓDULO DE ELASTICIDADE : ECS = 30GPA	BLOCOS: 5.0CM TUBULÃO: 5.0CM			
FATOR ÁGUA CIMENTO : A/C <=0.45	RADIER: 5.0CM			
CONSUMO DE CIMENTO : 350KGF/M3	13 - NORMA DE FÔRMAS E ESCORAMENTOS :NBR 15696/2009			
3 - ACOS : CA-50 - FYK = 500 MPA	FÓRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO			
CA-60 - FYK = 600 MPA	PROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS			
4 - CONCRETO DE REGULARIZAÇÃO:	14 - NORMA DE CARGAS : NBR 6120/1980			
MÓDULO DE ELASTICIDADE : ECS = 18.5GPA	CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES			
ESPESSURA : 5.0CM	15 - NORMA DE CÁLCULO : NBR 6118/2014			
CONSUMO DE CIMENTO : 250KGF/M3	PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO			
5 - AS COTAS PREVALECEM SOBRE O DESENHO	16 - NORMA DE FUNDAÇÕES : NBR 6122/2010			
6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = IV	PROJETO E EXECUÇÃO DE FUNDAÇÕES			
7 - FATOR DO TERRENO:SI = 1.0	17 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012			
8 - CATEGORIA DE RUGOSIDADE:S2 = I	PROJETO DE ESTRUTURAS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO			
9 - CLASSE DA EDIFICAÇÃO:S2 = C	18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004			
10 - FATOR ESTATÍSTICO:S3 = 1.00	EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO			
11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S	19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS			
12 - Cobrimento das armaduras :	TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBRA			

REVISÃO

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA


DESENHO PRANCHA Nº


01/03

PROJETO EXECUTIVO

PROJETO ESTRUTURAL ESTAÇÃO ELEVATÓRIA EE-02 FORMAS E CORTES


GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA				
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIROZ				
PROJETO:	ENG° CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 011	840/D			
DESENHO:	EQUIPE ML	ESCALA:	INDICADA		
ARQUIVO:	0647ST-001-EST-R00.DWG DATA: MAIO/201				

NOTAS :	
1 – COTAS E DIMENSÕES EM CM.	LAJES: 5.0CM SAPATAS: 5.0CM
2 - CONCRETO : FCK = 40MPA	PILARES: 5.0CM VIGAS: 5.0CM
MÓDULO DE ELASTICIDADE : ECS = 30GPA	BLOCOS: 5.0CM TUBULÃO: 5.0CM
FATOR ÁGUA CIMENTO : A/C <=0.45	radier: 5.0cm
CONSUMO DE CIMENTO : 350KGF/M3	13 - NORMA DE FÔRMAS E ESCORAMENTOS :NBR 15696/2009
3 - ACOS : CA-50 - FYK = 500 MPA	FÔRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO
CA-60 - FYK = 600 MPA	PROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS
4 - CONCRETO DE REGULARIZAÇÃO:	14 - NORMA DE CARGAS : NBR 6120/1980
MÓDULO DE ELASTICIDADE : ECS = 18.5GPA	CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES
ESPESSURA : 5.0CM	15 - NORMA DE CÁLCULO : NBR 6118/2014
CONSUMO DE CIMENTO : 250KGF/M3	PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO
5 - AS COTAS PREVALECEM SOBRE O DESENHO	16 - NORMA DE FUNDAÇÕES : NBR 6122/2010
6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = IV	PROJETO E EXECUÇÃO DE FUNDAÇÕES
7 - FATOR DO TERRENO:S1 = 1.0	17 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012
8 - CATEGORIA DE RUGOSIDADE:S2 = I	Projeto de estruturas de concreto em situação de incêndio
9 - CLASSE DA EDIFICAÇÃO:S2 = C	18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004
10 - FATOR ESTATÍSTICO:S3 = 1.00	EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO
11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S	19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS
12 - COBRIMENTO DAS ARMADURAS :	TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBRA

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA DESENHO PRANCHA Nº GERÊNCIA DE PROJETOS DE ENGENHARIA

03/03 SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA

> PROJETO EXECUTIVO PROJETO ESTRUTURAL ESTAÇÃO ELEVATÓRIA EE-02 ARMAÇÃO

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA			
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIROZ			
PROJETO:	ENG° CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 011840/D			
DESENHO:	EQUIPE ML	ESCALA:	INDICADA	
ARQUIVO:	0647ST-003-EST-R00.DWG	DATA:	MAIO/2019	

Memória de Cálculo EE-03

MEMORIA DE CÁLCULO - EE-03

Serra/ES

31 de Maio de 2019

1.1 OBJETIVO

Este presente trabalho visa desenvolver o projeto estrutural da EE-03.

1.2 DOCUMENTOS DE REFERÊNCIA

Os documentos relacionados foram utilizados na elaboração deste documento ou contêm instruções e procedimentos aplicáveis a ele. Devem ser utilizados na sua revisão mais recente:

• 16.32 SES-BACIA CE6 EE-01 ARQ 01.04

1.3 INTRODUÇÃO

O presente trabalho complementa as pranchas de armação e formas relativas à: estação elevatória EE-03.

O dimensionamento dos elementos citados fora executado tomando como base as normas que seguem:

- NBR 6118 Projeto de estruturas de concreto Procedimentos
- NBR 6120 Cargas para o cálculo de estruturas de edificações
- NBR 6122 Projeto e execução de fundações
- NBR 6123 Força devidas ao vento em edificações
- NBR 8681:2003 Ações e segurança nas estruturas Procedimentos.

Documentos técnicos e livros como:

- Resistência do Materias, V. Feodosiev
- Curso de Concreto Armado, José Milton de Araújo

Além dos softwares de dimensionamento e análise hiperestática: STRAP 2011

1.4 CARACTERÍSTICAS GERAIS DO PROJETO

- Fck: 40 MPa
- Fator água-cimento: 0.45 (máximo)
- Aço CA 50 e CA 60
- Es: 210 GPa
- Deformação limite do aço para dimensionamento: 10%.
- Grau de agressividade do Meio Ambiente: IV (NBR 6118/2014)
- Limite de abertura de Fissuras ≤ 0.2 mm
- Dimensão máxima do agregado graúdo: 25 mm
- Método para análise de 2° Ordem Global: Gama Z
- Compactação com Proctor normal à 100%
 - Classe de Agressividade Ambiental NBR6118:2014

Classe de agressividade ambiental	Agressividade	Classificação geral do tipo de ambiente para efeito de projeto	Risco de deterioração da estrutura	
1.2%()	France	Rural	Insignificants	
21.0	Fraca	Submersa	Insignificante	
ĬĬ	Moderada	Urbana a, b	Pequeno	
III	Forte	Marinha ^a	Counts	
- 111	Fone	Industrial a, b	Grande	
IV	Muito forte	Industrial ^{a, c}		
IV	Widito lofte	Respingos de maré	Elevado	

- Pode-se admitir um microclima com uma classe de agressividade mais branda (uma classe acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura).
- Pode-se admitir uma classe de agressividade mais branda (uma classe acima) em obras em regiões de clima seco, com umidade média relativa do ar menor ou igual a 65 %, partes da estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde raramente chove.
- Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas.
- Cobrimento de acordo com a Classe de Agressividade Ambiental NBR6118:2014

Tabela 7.2 – Correspondência entre a classe de agressividade ambiental e
o cobrimento nominal para $\Delta c = 10 \text{ mm}$

		Classe de a	agressividade	ambiental (T	abela 6.1	
Tipo de estrutura	Componente ou	Ĭ	П	Ш	IV c	
ripo de estrutura	elemento	Cobrimento nominal mm				
	Laje ^b	20	25	35	45	
	Viga/pilar	25 30		40	50	
Concreto armado	Elementos estruturais em contato com o solo ^d	3	30	40	50	
Concreto	Laje	25	30	40	50	
protendido a	Viga/pilar	30	35	45	55	

- a Cobrimento nominal da bainha ou dos fios, cabos e cordoalhas. O cobrimento da armadura passiva deve respeitar os cobrimentos para concreto armado.
- b Para a face superior de lajes e vigas que serão revestidas com argamassa de contrapiso, com revestimentos finais secos tipo carpete e madeira, com argamassa de revestimento e acabamento, como pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos e outros, as exigências desta Tabela podem ser substituídas pelas de 7.4.7.5, respeitado um cobrimento nominal ≥ 15 mm.
- Nas superfícies expostas a ambientes agressivos, como reservatórios, estações de tratamento de água e esgoto, condutos de esgoto, canaletas de efluentes e outras obras em ambientes química e intensamente agressivos, devem ser atendidos os cobrimentos da classe de agressividade IV.
- d No trecho dos pilares em contato com o solo junto aos elementos de fundação, a armadura deve ter cobrimento nominal ≥ 45 mm.

Limite de Abertura de Fissuras de acordo com a Classe de Agressividade Ambiental NBR6118:2014

Tabela 13.4 – Exigências de durabilidade relacionadas à fissuração e à proteção da armadura, em função das classes de agressividade ambiental

1	9	P		
Classe de agressividade ambiental (CAA) e tipo de protensão	Exigências relativas à fissuração	Combinação de ações em serviço a utilizar		
CAA I a CAA IV	Não há	1 to 1		
CAAI	ELS-W <i>w</i> _k ≤ 0,4 mm			
CAA II e CAA III	ELS-W <i>w</i> _k ≤ 0,3 mm	Combinação frequente		
CAA IV	ELS-W <i>w</i> _k ≤ 0,2 mm			
Pré-tração com CAA I ou Pós-tração com CAA I e II	ELS-W <i>w</i> _k ≤ 0,2 mm	Combinação frequente		
Pró tração com CAA II	Verificar as duas condições abaixo			
ou	ELS-F	Combinação frequente		
Pós-tração com CAA III e IV	ELS-D a	Combinação quase permanente		
SWANNER SEE	Verificar as dua:	s condições abaixo		
Pré-tração com CAA III	ELS-F	Combinação rara		
	ELS-Da	Combinação frequente		
	ambiental (CAA) e tipo de protensão CAA I a CAA IV CAA II CAA II e CAA III CAA IV Pré-tração com CAA I ou Pós-tração com CAA I e II Pré-tração com CAA III ou Pós-tração com CAA III ou Pós-tração com CAA III e IV	ambiental (CAA) e tipo de protensão CAA I a CAA IV Não há CAA I CAA II CAA III CAA III CAA IV Pré-tração com CAA I o u Pós-tração com CAA II ou Pós-tração com CAA III e IV Relativas à fissuração Relativas à fissuração Não há ELS-W w _k ≤ 0,4 mm ELS-W w _k ≤ 0,3 mm ELS-W w _k ≤ 0,2 mm Verificar as dua: ELS-F Verificar as dua: ELS-D a Verificar as dua: ELS-D a Verificar as dua: ELS-D a		

a A critério do projetista, o ELS-D pode ser substituído pelo ELS-DP com a_p = 50 mm (Figura 3.1). NOTAS

> Fator Água-Cimento de acordo com a Classe de Agressividade Ambiental NBR6118:2014

Tabela 7.1 - Correspondência entre a classe de agressividade e a qualidade do concreto

Concreto a	Tipo b, c	Classe de agressividade (Tabela 6.1)				
Concreto -	Tipo o, o	1	П	Ш	IV	
Relação	CA	≤ 0,65	≤0,60	≤ 0,55	≤ 0,45	
água/cimento em massa	CP	≤ 0,60	≤ 0,55	≤ 0,50	≤ 0,45	
Classe de concreto	CA	≥ C20	≥ C25	≥ C30	≥ C40	
(ABNT NBR 8953)	CP	≥ C25	≥ C30	≥ C35	≥ C40	

a O concreto empregado na execução das estruturas deve cumprir com os requisitos estabelecidos na ABNT NBR 12655.

¹ As definições de ELS-W, ELS-F e ELS-D encontram-se em 3.2.

² Para as classes de agressividade ambiental CAA-III e IV, exige-se que as cordoalhas não aderentes tenham proteção especial na região de suas ancoragens.

³ No projeto de lajes lisas e cogumelo protendidas, basta ser atendido o ELS-F para a combinação frequente das ações, em todas as classes de agressividade ambiental.

b CA corresponde a componentes e elementos estruturais de concreto armado.

CP corresponde a componentes e elementos estruturais de concreto protendido.

Dimensão máxima do agregado graúdo - NBR6118:2014

7.4.7.6 A dimensão máxima característica do agregado graúdo utilizado no concreto não pode superar em 20 % a espessura nominal do cobrimento, ou seja:

 $d_{\text{máx}} \le 1.2 c_{\text{nom}}$

2.0 MODELO DE CÁLCULO

Laje de piso do reservatório apoiado sobre base elástica. O campo de deslocamentos e tensões foi calculada adotando-se a metodologia implementada pelo software comercial STRAP VERSÃO 2011.

CARGAS E COMBINAÇÕES

Ações Permanentes:

- g1 Peso próprio do concreto (permanente direta)
- g2 Empuxo de terra (permanente direta)
- q1 Água

Ações Variáveis Acidentais:

• q2 - Sobrecarga

Coeficientes de ponderação (γg , γq), fatores de combinação (ψq), e fatores de redução ($\psi 1$, $\psi 1$) para:

- Combinação Normal (CN) em Estado Limite de Utilização (ELU);
- Combinação Quase Permanente (CQP) em Estado Limite de Serviço (ELS);
- Combinação Frequente (CF) em Estado Limite de Serviço (ELS).

	CN-ELU	CQP-ELS	CF-ELS
Ações Permanentes:	γg	γg	γg
Cargas permanentes	1,4	1	1
Retração	1,2	1	1
Ações Variáveis (qdo. princ.):	γq	γq	γq
Sobrecarga	1,4	1	1
Empuxo hidrostático	1,4	1	1
Gradiente térmico	1,2	1	1
Ações Variáveis (qdo. secnd.):	ψ0	ψ1	ψ2
Sobrecarga	0,8	0,7	0,6
Empuxo hidrostático	0,8	0,7	0,6
Gradiente térmico	0,6	0,5	0,3

Grandezas Físicas das Ações:

- g1 Peso próprio do concreto = Volume dos elementos multiplicado pelo peso específico do concreto armado. Unidades: peso em tf e o volume em m³.
- g2 -Empuxo de terra

Argila com areia fina cor variegada

 $\gamma t = 18,00 \text{ kN/m}^3 \text{ Godoy}, 1972$

 $\phi = 0^{\circ}$ K0 = 1,00 K0 = 1 - sen ϕ

 $p = K0.\gamma t.h$

- g3 Enchimentos = Volume do elemento multiplicado pelo peso específico do material. Unidades: peso em tf e volume em m³.
- g4 Retração: Não Consideramos uma retração em toda a estrutura
- q1 Empuxo Hidrostático interno: Em todas as faces internas estão sendo aplicada uma pressão de base ao topo. O peso específico utilizado no cálculo destas pressões é o da água, igual a 1tf/m³ multiplicado pela altura da lamina d'água.
- q2 Sobrecarga: Nas lajes de tampa e escadas foram consideradas sobrecargas de utilização iguais a 0,3 tf/m².
- q3 gradiente térmico: Não foi considerado, as estruturas estão enterradas e as partes expostas tem pequenas dimensões e em consequência as deformações devido ao gradiente térmico são insignificantes.

Combinações:

Estado Limite Último - ELU-CN (cheio):

C01 = 1,40.(g1+g3)+g2+1,40.q1+1,20.q2

C02 = 1,40.(g1+g3)+g2+1,40.q2+1,20.q1

Estado Limite Último - ELU-CN (vazio):

C03 = 1,40.(g1+g2+g3)+1,40.q2

Estado Limite de Serviço ELS-CF (cheio)

C05 = 1,00.(g1+g2+g3)+0,70.q1+0,60.q2

C06 = 1,00.(g1+g2+g3)+0,70.q2+0,60.q1

Estado Limite de Serviço ELS-CF (vazio)

C07 = 1,00.(g1+g2+g3)+0,70.q2

Especial, para verificação da flutuação

C08 = 1,00.(g1+g3)+1,00.q4

2.1 DIMENSIONAMENTO DAS SEÇÕES

Os cálculos de paredes e lajes de fundo e tampas foram considerados um elemento estrutural de 100 cm de largura e altura h, para o dimensionamento a flexo-tração com a força da envoltória máxima nas direções x e y e momentos da envoltória máxima e mínima nas direções x e y. A compressão aqui foi desprezada por entender que a solicitação máxima acontece quando o elemento estrutural em questão é tracionado junto com a flexão.

Após a verificação da flexo-tração o elemento foi verificado com relação à formação de fissuras.

Momento mínimo para a dispensa de análise de fissuração (ESTÁDIO I e II):

$$M_R = a f_{ct} I_o / y_t [tf. m]$$
(1)

Calculando teremos, M_r para um fck = 40 MPa e h variado igual à:

- h=15cm; M_r = 2.60tf.m
- h=20cm; M_r = 3,46tf.m

Armadura mínima prevista em norma:

$$A_{s,min} = \rho_{min} 100h \left[\frac{cm^2}{m} \right] \tag{2}$$

Sendo ho_{min} taxa de armadura mínima conforme a NBR 6118:2003

Farma da sassa			Va	lores de ρ _{mi}	1) (A _{s,min} /A _c)			
Forma da seção	f _{ck} ω _{min}	20	25	30	35	40	45	50
Retangular	0,035	0,150	0,150	0,173	0,201	0,230	0,259	0,288
T (mesa comprimida)	0,024	0,150	0,150	0,150	0,150	0,158	0,177	0,197
T (mesa tracionada)	0,031	0,150	0,150	0,153	0,178	0,204	0.229	0,255
Circular	0,070	0,230	0,288	0,345	0,403	0,460	0,518	0,575

 $^{^{11}}$ Os valores de $ρ_{min}$ estabelecidos nesta tabela pressupõem o uso de aço CA-50, $γ_c$ = 1,4 e $γ_s$ = 1,15. Caso esses fatores sejam diferentes, $ρ_{min}$ deve ser recalculado com base no valor de $ω_{min}$ dado.

Calculando teremos, A_{s,min} para um fck = 40MPa, b=100cm, seção retangular e h variado igual à:

• h=15cm; $A_{s,min} = 2,60 \text{cm}^2/\text{m}$ Ø6.3 C/10 ou Ø8 C/18

• h=20cm; $A_{s,min} = 4,60 \text{cm}^2/\text{m}$ Ø8 C/12 ou Ø10 C/20

2.2 SEÇÕES DE CONCRETO UTILIZADAS

Foram utilizadas as seguintes seções de concreto para as respectivas estruturas:

• Estação elevatória EE-03:

Paredes: 20 cm

Fundo: 20 cm

Tampa: 20cm

2.3 FUNDAÇÃO

Para a estrutura do Reservatório utilizamos a laje de fundo apoiada diretamente sobre o solo. Como modelo de cálculo adotamos um sistema de molas de resposta linear. Para obter a tensão média admissível a partir desse ensaio, utiliza-se o número médio de golpes aplicando a seguinte fórmula:

s = 0.20 * SPT Médio (kgf/m²)

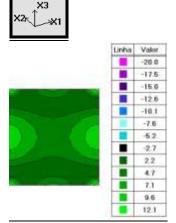
A partir dos valores de tensão média admissível é possível obter o valor de Kv por correlação, utilizando a tabela abaixo:

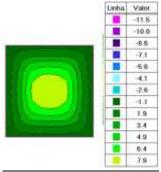
NOTA - Nas seções tipo T, a área da seção a ser considerada deve ser caracterizada pela alma acrescida da mesa colaborante.

Tensão admissível (kgf/cm²)	Kv (kgf/cm³)	Tensão admissível (kgf/cm²)	Kv (kgf/cm³)
0,25	0,65	2,15	4,30
0,30	0,78	2,20	4,40
0,35	0,91	2,25	4,50
0,40	1,04	2,30	4,60
0,45	1,17	2,35	4,70
0,50	1,30	2,40	4,80
0,55	1,39	2,45	4,90
0,60	1,48	2,50	5,00
0,65	1,57	2,55	5,10
0,70	1,66	2,60	5,20
0,75	1,75	2,65	5,30
0,80	1,84	2,70	5,40
0,85	1,93	2,75	5,50
0,90	2,02	2,80	5,60
0,95	2,11	2,85	5,70
1,00	2,20	2,90	5,80
1,05	2,29	2,95	5,90
1,10	2,38	3,00	6,00
1,15	2,47	3,05	6,10
1,20	2,56	3,10	6,20
1,25	2,65	3,15	6,30
1,30	2,74	3,20	6,40
1,35	2,83	3,25	6,50
1,40	2,92	3,30	6,60
1,45	3,01	3,35	6,70
1,50	3,10	3,40	6,80
1,55	3,19	3,45	6,90
1,60	3,28	3,50	7,00
1,65	3,37	3,55	7,10
1,70	3,46	3,60	7,20
1,75	3,55	3,65	7,30
1,80	3,64	3,70	7,40
1,85	3,73	3,75	7,50
1,90	3,82	3,80	7,60
1,95	3,91	3,85	7,70
2,00	4,00	3,90	7,80
2,05	4,10	3,95	7,90
2,10		4,00	8,00

Fonte: Safe, Morrison (1993)

Adotamos uma taxa de solo de 1,0Kgf/cm².





3.0 ESTAÇÃO ELEVATÓRIA DE ESGOTO

3.1 FUNDO

FUNDO - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)

FUNDO – ENVOLTÓRIA DE CARREGAMENTOS MAX – MOMENTO NA DIREÇÃO DE X (tf.m/m)

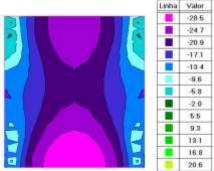
		W.	Lajes N	Aaciças e	m Concr	eto Arn	nado				
Mate	erials	Esto	rços		Seção			SE	GURAN	IÇA	
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξmáx.	As,min (cm²/m)	Ye	γa	γr	Classe Agres.
500	40	6,40	15,00	20	5,3	0,4	4,60	1,40	1,15	1,40	Classe IV

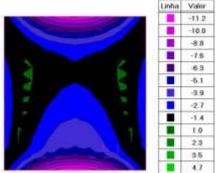
ELU - Flexão Composta - Arm. Assimétrica									
	Arranjo								
Armadura n	madura necessaria		Esp. (cm)	As _{Jot} (cm²/m					
As1 (cm4m)		16	12,0	16,76					
As2 (cm ² m)	12,58	16	12,0	16,76					

Resumo - ELU							
Zona	ξ	ωι	WZ				
Zona D	0,265	0,000	0.153				

Verifica	ação Fissuras	- LAJES - FLEX	KÃO COMPOST	A - ARM. SIN	MPLES- CO	ONCRETO A	RMADO
Mate	eriais	Esfo	rços			Seção	
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)
500	40	6,4	15	20	5,3	16	12,0
			Cálculo			30	
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)
16,76	210.000	30.105	3,51	2,25	17,30	12.00	207.60
as	pri	ξ	x (cm)	osi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)
6,98	0.009685064	0,371	5,45	239,62	0,00	0,13298772	0,297304882

FUNDO – FORÇA E MOMENTO





3.2 PAREDE

PAREDE - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)

PAREDE – ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE Y (tf.m/m)

	Lajes Maciças em Concreto Armado										
Mate	Materiais Esforços Seção SEGURANÇA					NÇA					
Aço	fck	Mk	Nk	h	d'	ξmáx.	As,mín	24	24	nr.	Classe
(fyk)	(Mpa)	(tf.m/m)	(tf/m)	(cm)	(cm)	ςmax.	(cm²/m)	γc	γs	γf	Agres.
500	40	6,30	20,90	20	5,3	0,4	4,60	1,40	1,15	1,40	Classe IV

ELU - Flexão Composta - Arm. Assimétrica									
Armadura	necessária	Arranjo							
Armadura	necessaria	Ф (mm)	As,tot (cm²/m)						
As1 (cm²/m)	1	16	12,0	16,76					
As2 (cm²m)	11,17	16	12,0	16,76					

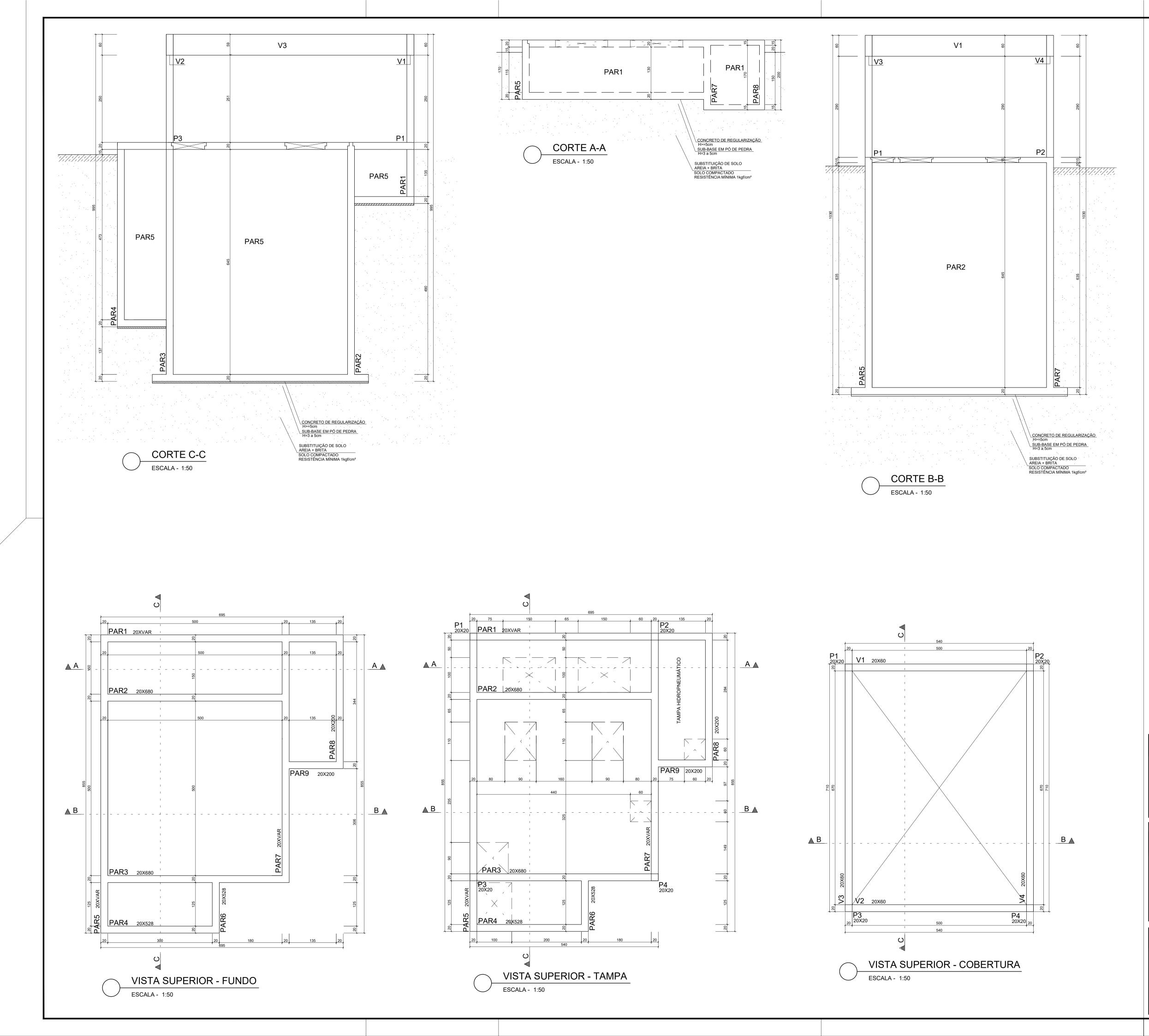
Resumo - ELU							
Zona	ξ	ω1	ω2				
Zona D	0,273	0,000	0,136				

Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO									
Materiais		Esforços		Seção					
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)		
500	40	6,3	20,9	20	5,3	16	12,0		
Cálculo									
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)		
16,76	210.000	30.105	3,51	2,25	17,30	12,00	207,60		
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)		
6,98	0,009685064	0,391	5,75	215,25	0,00	0,10731317	0,267068563		

PAREDE - FORÇA E MOMENTO

CARLOS RAPHAEL MONTEIRO DE LEMOS

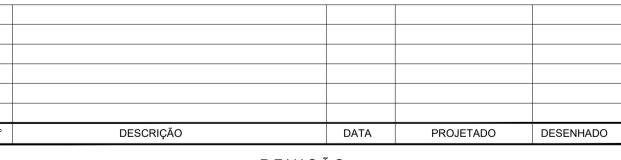
CREA-ES 011840/D


Peças Gráficas

PEÇAS GRÁFICAS

Relação de Plantas:

DESENHO:	PRANCHA:	TÍTULO:
01	01/04	Estação Elevatória EE-03 – Formas e Cortes
01	02/04	Estação Elevatória EE-03 – Armação
01	03/04	Estação Elevatória EE-03 – Armação
01	04/04	Estação Elevatória EE-03 – Armação



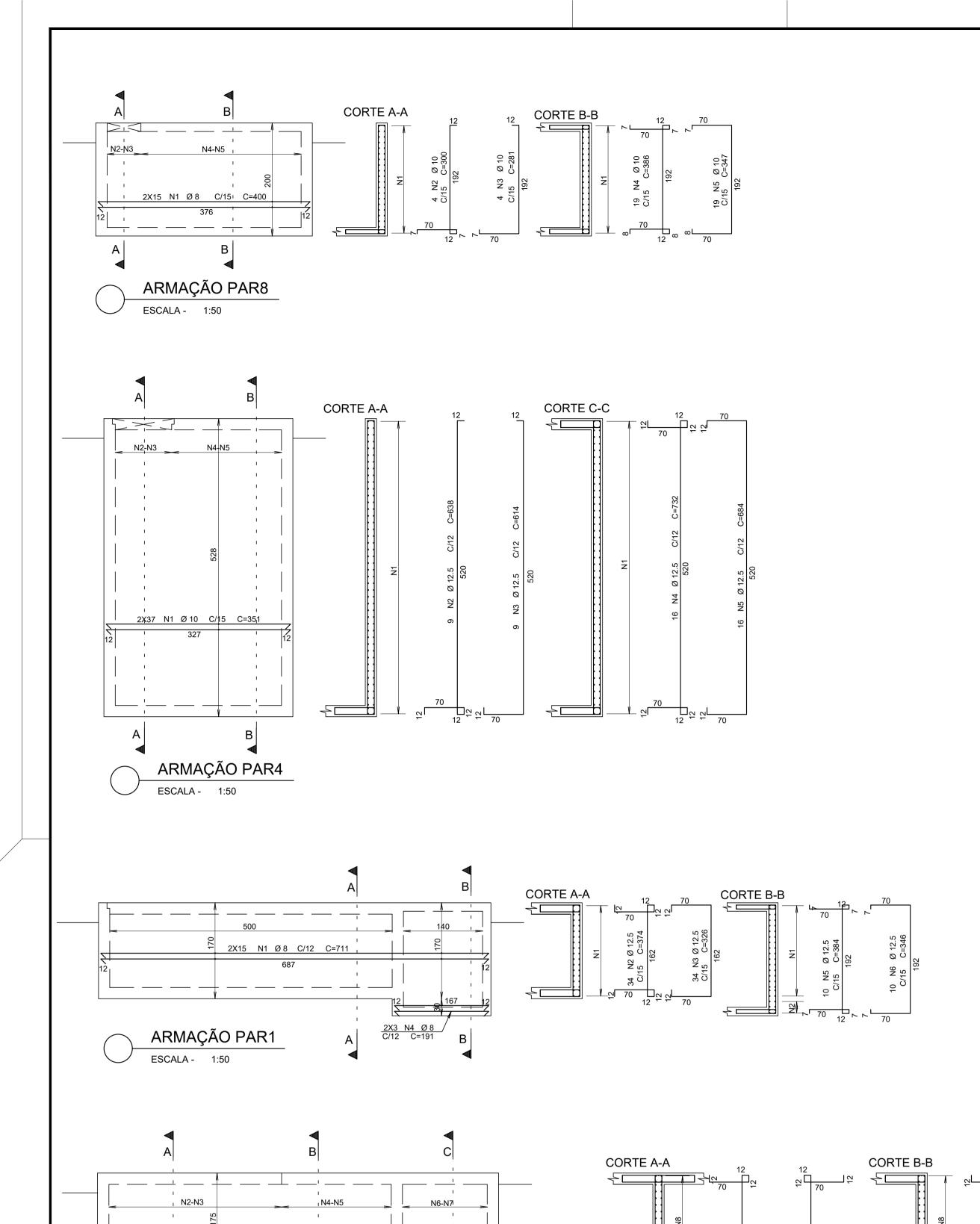
QUANTITATIVOS

			EI	LEMENT	OS ESTRU	TURAIS		
	TAMPA PAREDES FUND VIGAS PILAR FUNDO CAIXAS				TOTAL			
ÁREA DE FORMAS (M2)	50.00	424.00	XXX	33.00	12.00	7.00	XXX	526.00
VOLUME DE CONCRETO ESTRUTURAL 40MPA(M3)	10.00	43.00	XXX	3.00	0.60	12.50	XXX	69.10
VOLUME DE CONCRETO SIMPLES 15MPA(M3)	XXX	XXX	XXX	XXX	XXX	3.00	XXX	3.00

NOTAS :	
1 – COTAS E DIMENSÕES EM CM.	LAJES: 5.0CM SAPATAS: 5.0CM
2 - CONCRETO : FCK = 40MPA	PILARES: 5.0CM VIGAS: 5.0CM
MÓDULO DE ELASTICIDADE : ECS = 30GPA	BLOCOS: 5.0CM TUBULÃO: 5.0CM
FATOR ÁGUA CIMENTO : A/C <=0.45	RADIER: 5.0CM
CONSUMO DE CIMENTO : 350KGF/M3	13 - NORMA DE FÔRMAS E ESCORAMENTOS :NBR 15696/2009
3 - ACOS : CA-50 - FYK = 500 MPA	FÓRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO
CA-60 - FYK = 600 MPA	PROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS
4 - CONCRETO DE REGULARIZAÇÃO:	14 - NORMA DE CARGAS : NBR 6120/1980
MÓDULO DE ELASTICIDADE : ECS = 18.5GPA	CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES
ESPESSURA : 5.0CM	15 - NORMA DE CÁLCULO : NBR 6118/2014
CONSUMO DE CIMENTO : 250KGF/M3	PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO
5 - AS COTAS PREVALECEM SOBRE O DESENHO	16 - NORMA DE FUNDAÇÕES : NBR 6122/2010
6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = IV	PROJETO E EXECUÇÃO DE FUNDAÇÕES
7 - FATOR DO TERRENO:SI = 1.0	17 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012
8 - CATEGORIA DE RUGOSIDADE:S2 = I	PROJETO DE ESTRUTURAS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO
9 - Classe da edificação:s2 = c	18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004
10 - FATOR ESTATÍSTICO:S3 = 1.00	EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO
11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S	19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS
12 - Cobrimento das armaduras :	TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBRAS

REVISÃO

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA DESENHO PRANCHA Nº GERÊNCIA DE PROJETOS DE ENGENHARIA

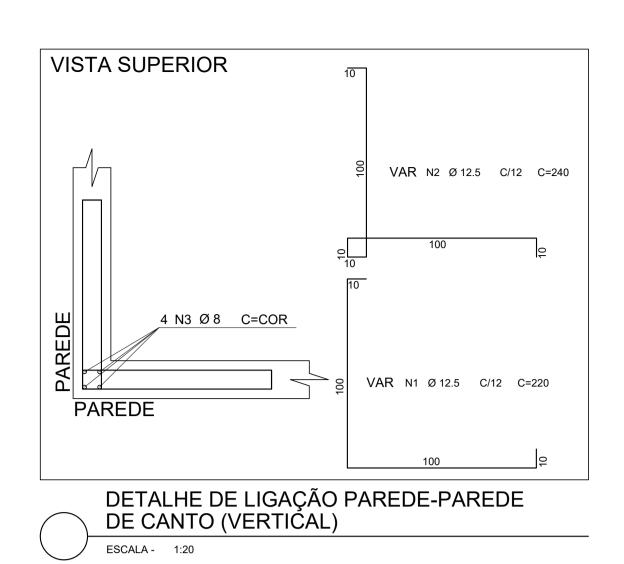

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA

01/04

PROJETO EXECUTIVO

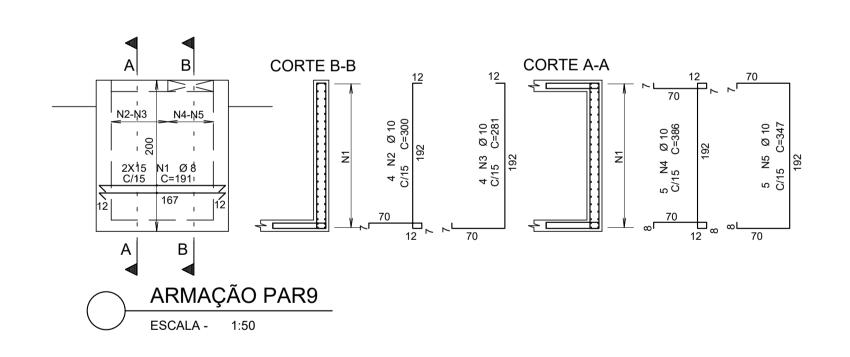
PROJETO ESTRUTURAL ESTAÇÃO ELEVATÓRIA EE-03 FORMAS E CORTES

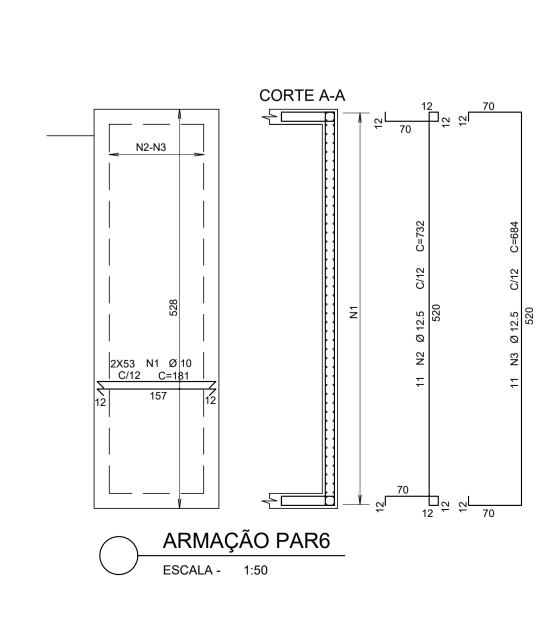
GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA			
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIROZ			
PROJETO:	ENGO CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 011	1840/D		
DESENHO:	EQUIPE ML	ESCALA:	INDICADA	
ARQUIVO:	0648ST-001-EST-R00.DWG	MAIO/2019		


2X18 N8 Ø 10 C/12 ' C=727

2X43 N1 Ø 10 C/12 C=556

ARMAÇÃO PAR7


ESCALA - 1:50


CORTE C-C

	AÇO	POS	BIT	QUANT	COMPF	RIMENTO
			(mm)		UNIT	TOTAL
					(cm)	(cm)
DETAL	HE DE LIG	ACÃO P	AREDE-PA	REDE	(===)	()
	50A	1	12.5	142	220	31240
	50A	2	12.5	142	240	34080
	50A	3	8	4	-CORR-	6784
ARMA	ÇÃO PAR1					
	50A	1	8	30	711	21330
	50A	2	12.5	34	374	12716
	50A	3	12.5	34	326	11084
	50A	4	8	6	191	1146
	50A	5	12.5	10	384	3840
	50A	6	12.5	10	346	3460
ARMA	ÇÃO PAR4					
	50A	1	10	74	351	25974
	50A	2	12.5	9	638	5742
	50A	3	12.5	9	614	5526
	50A	4	12.5	16	732	11712
	50A	5	12.5	16	684	10944
ARMA	ÇÃO PAR6					
	50A	1	10	106	181	19186
	50A	2	12.5	11	732	8052
	50A	3	12.5	11	684	7524
ARMA	ÇÃO PAR7					
	50A	1	10	86	556	47816
	50A	2	16	26	884	22984
	50A	3	16	26	860	22360
	50A	4	16	17	884	15028
	50A	5	16	17	836	14212
	50A	6	12.5	10	379	3790
	50A	7	12.5	10	331	3310
	50A	8	10	36	727	26172
ARMA	ÇÃO PAR8					
[50A	1	8	30	400	12000
	50A	2	10	4	300	1200
ļ	50A	3	10	4	281	1124
	50A	4	10	19	386	7334
	50A	5	10	19	347	6593
ARMA	ÇÃO PAR9					_
[50A	1	8	30	191	5730
	50A	2	10	4	300	1200
	50A	3	10	4	281	1124
	50A	4	10	5	386	1930
		5	10	5	347	1735

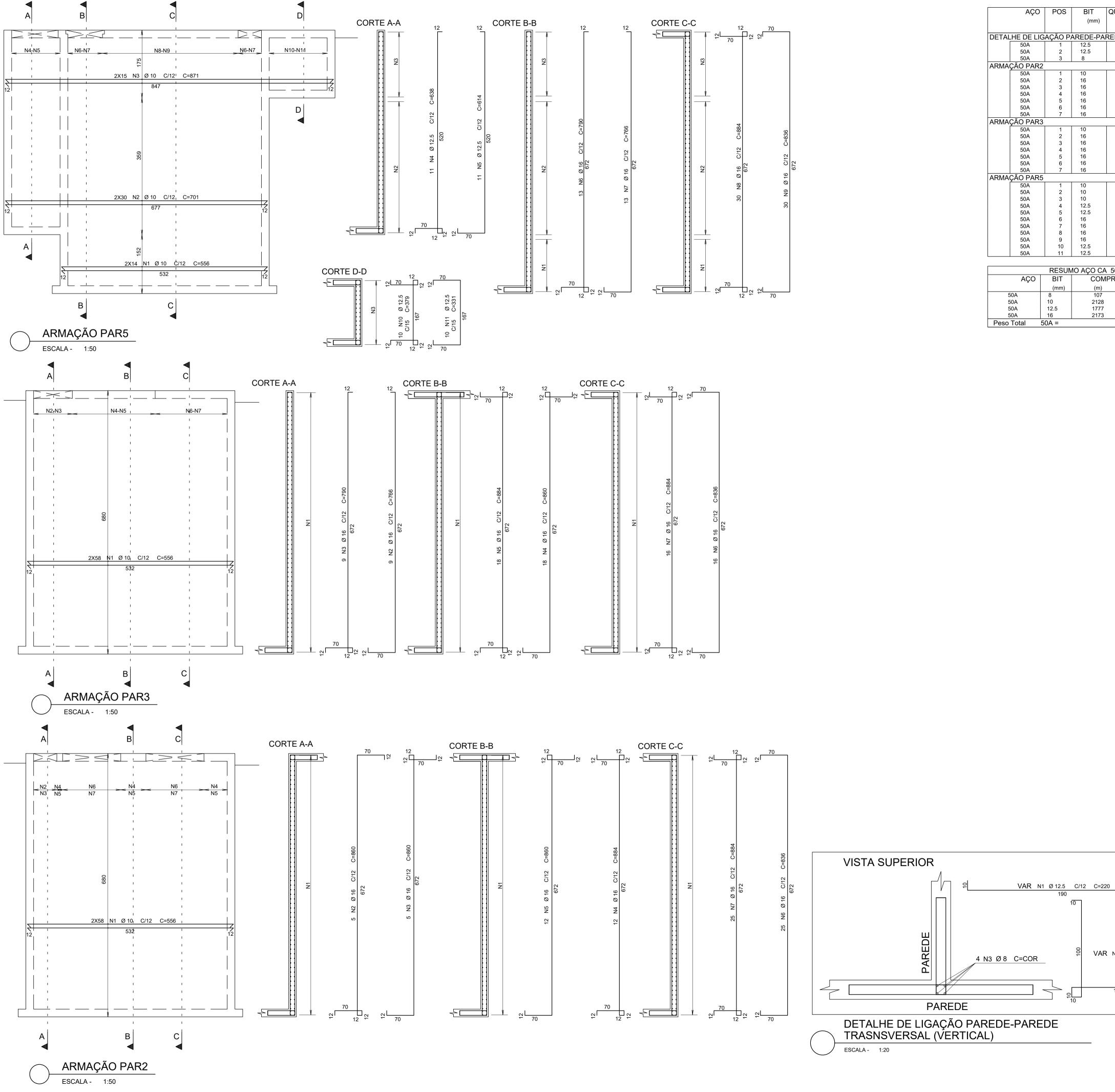
	307	3	10	ז	347	1733
	RESUMO AÇO CA 50-60					
	AÇO	BIT	COM	PR	P	PESO
		(mm)	(m)		(1	kg)
	50A	8	470			186
	50A	10	1414			872
	50A	12.5	1530			1474
į	50A	16	746			1177
Peso	Total	50A =			3708 kg	j

IOTAS :	
– COTAS E DIMENSÕES EM CM.	LAJES: 5.0CM SAPATAS: 5.0CM
- CONCRETO : FCK = 40MPA	PILARES: 5.0CM VIGAS: 5.0CM
MÓDULO DE ELASTICIDADE : ECS = 30GPA	BLOCOS: 5.0CM TUBULÃO: 5.0CM
FATOR ÁGUA CIMENTO : A/C <=0.45	RADIER: 5.0CM
CONSUMO DE CIMENTO : 350KGF/M3	13 - NORMA DE FÔRMAS E ESCORAMENTOS :NBR 15696/2009
- ACOS : CA-50 - FYK = 500 MPA	FÔRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO
CA-60 - FYK = 600 MPA	PROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS
– CONCRETO DE REGULARIZAÇÃO:	14 - NORMA DE CARGAS : NBR 6120/1980
MÓDULO DE ELASTICIDADE : ECS = 18.5GPA	CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES
ESPESSURA : 5.0CM	15 - NORMA DE CÁLCULO : NBR 6118/2014
CONSUMO DE CIMENTO : 250KGF/M3	PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENT
– AS COTAS PREVALECEM SOBRE O DESENHO	16 - NORMA DE FUNDAÇÕES : NBR 6122/2010
- CLASSE DE AGRESSIVIDADE AMBIENTAL = IV	PROJETO E EXECUÇÃO DE FUNDAÇÕES
- FATOR DO TERRENO:S1 = 1.0	17 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012
- Categoria de Rugosidade:82 = I	PROJETO DE ESTRUTURAS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO
- CLASSE DA EDIFICAÇÃO:S2 = C	18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004
- FATOR ESTATÍSTICO:S3 = 1.00	EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO
- VELOCIDADE BÁSICA DO VENTO:V = 30M/S	19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS
2 - COBRIMENTO DAS ARMADURAS :	TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBR

N°	DESCRIÇÃO	DATA	PROJETADO	DESENHADO			
	REVISÃO						

Cagece

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA

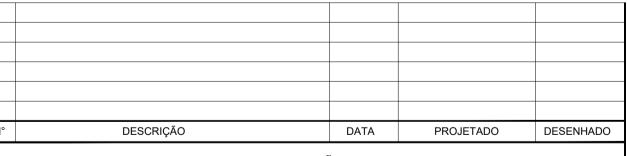

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA

DESENHO PRANCHA Nº

02/04

PROJETO EXECUTIVO PROJETO ESTRUTURAL ESTAÇÃO ELEVATÓRIA EE-03 ARMAÇÃO

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA			
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIROZ			
PROJETO:	ENGO CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 011	840/D		
DESENHO:	EQUIPE ML	ESCALA:	INDICADA	
ARQUIVO:	0648ST-002-EST-R00.DWG DATA: MAIO/2019			



100	DOS	DIT	OLIANT	COMPE	UMENTO	
AÇO	POS	BIT	QUANT		RIMENTO	
		(mm)		UNIT	TOTAL	
				(cm)	(cm)	
DETALHE DE LIG	AÇÃO P	AREDE-PA	REDE			
50A	1	12.5	224	220	49280	
50A	2	12.5	448	240	107520	
50A	3	8	4	-CORR-	10720	
ARMAÇÃO PAR2						
50A	1	10	116	556	64496	
50A	2	16	5	860	4300	
50A	3	16	5	860	4300	
50A	4	16	12	884	10608	
50A	5	16	12	860	10320	
50A	6	16	25	836	20900	
50A	7	16	25	884	22100	
ARMAÇÃO PAR3						
50A	1	10	116	556	64496	
50A	2	16	9	766	6894	
50A	3	16	9	790	7110	
50A	4	16	18	860	15480	
50A	5	16	18	884	15912	
50A	6	16	16	836	13376	
50A	7	16	16	884	14144	
ARMAÇÃO PAR5						
50A	1	10	28	556	15568	
50A	2	10	60	701	42060	
50A	3	10	30	871	26130	
50A	4	12.5	11	638	7018	
50A	5	12.5	11	614	6754	
50A	6	16	13	790	10270	
50A	7	16	13	766	9958	
50A	8	16	30	884	26520	
50A	9	16	30	836	25080	
50A	10	12.5	10	379	3790	
50A	11	12.5	10	331	3310	

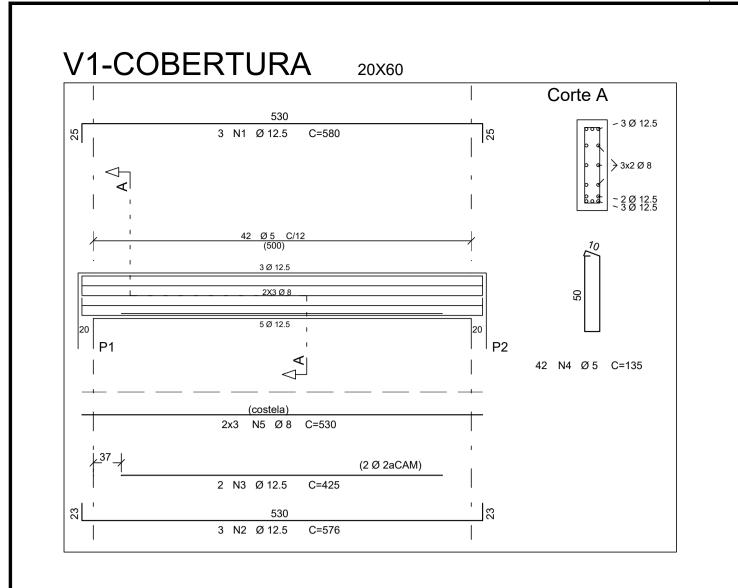
	50A	11	12.5	10	331	3310
		RESUN	10 AÇO CA	50-60		
	AÇO	BIT	COMPR		F	PESO
		(mm)	(m)			(kg)
5	50A	8	107			42
5	50A	10	2128			1313
5	50A	12.5	1777			1711
5	50A	16	2173			3429
Peso	Total	50A =		·	6495 k	g

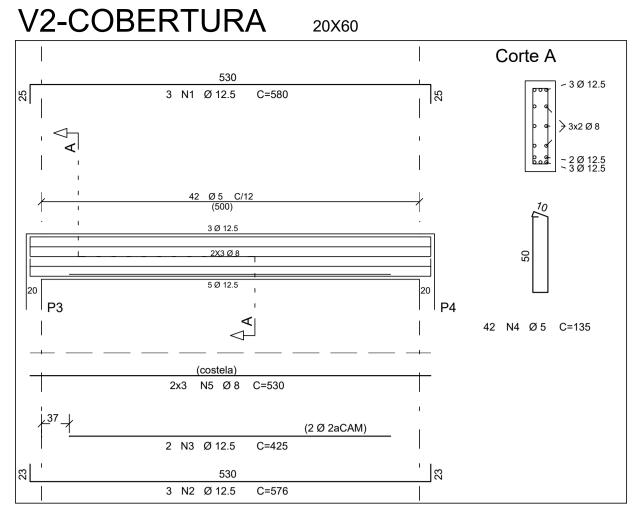
NOTAS :	
1 – COTAS E DIMENSÕES EM CM.	LAJES: 5.0CM SAPATAS: 5.0CM
2 - CONCRETO : FCK = 40MPA	PILARES: 5.0CM VIGAS: 5.0CM
MÓDULO DE ELASTICIDADE : ECS = 30GPA	BLOCOS: 5.0CM TUBULÃO: 5.0CM
Fator água cimento : a/c <=0.45	RADIER: 5.0CM
CONSUMO DE CIMENTO : 350KGF/M3	13 - NORMA DE FÓRMAS E ESCORAMENTOS :NBR 15696/2009
3 - ACOS : CA-50 - FYK = 500 MPA	FÔRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO
CA-60 - FYK = 600 MPA	PROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS
4 - CONCRETO DE REGULARIZAÇÃO:	14 - NORMA DE CARGAS : NBR 6120/1980
MÓDULO DE ELASTICIDADE : ECS = 18.5GPA	CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES
ESPESSURA : 5.0CM	15 - NORMA DE CÁLCULO : NBR 6118/2014
CONSUMO DE CIMENTO : 250KGF/M3	PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO
5 - AS COTAS PREVALECEM SOBRE O DESENHO	16 - NORMA DE FUNDAÇÕES : NBR 6122/2010
6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = IV	PROJETO E EXECUÇÃO DE FUNDAÇÕES
7 - FATOR DO TERRENO:SI = 1.0	17 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012
8 - Categoria de Rugosidade:s2 = 1	PROJETO DE ESTRUTURAS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO
9 - Classe da edificação:s2 = C	18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004
10 - FATOR ESTATÍSTICO:S3 = 1.00	EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO
11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S	19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS
12 - COBRIMENTO DAS ARMADURAS :	TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBRA

REVISÃO

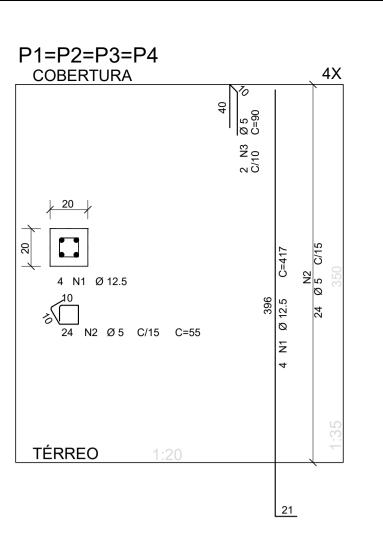
VAR N2 Ø 12.5 C/12 C=240

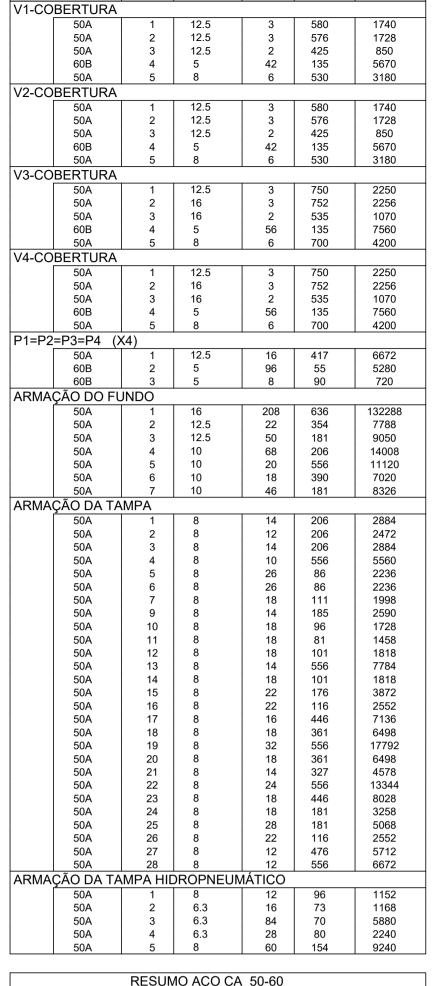
COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA


SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA

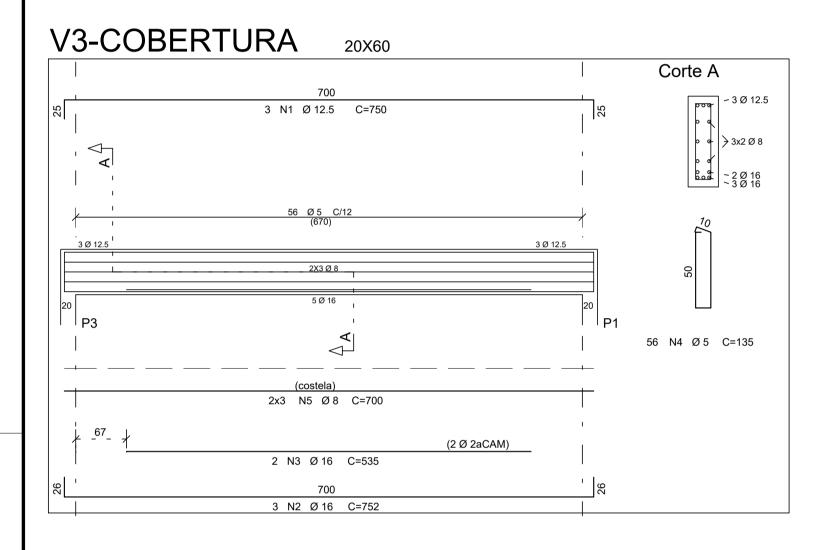

DESENHO PRANCHA Nº

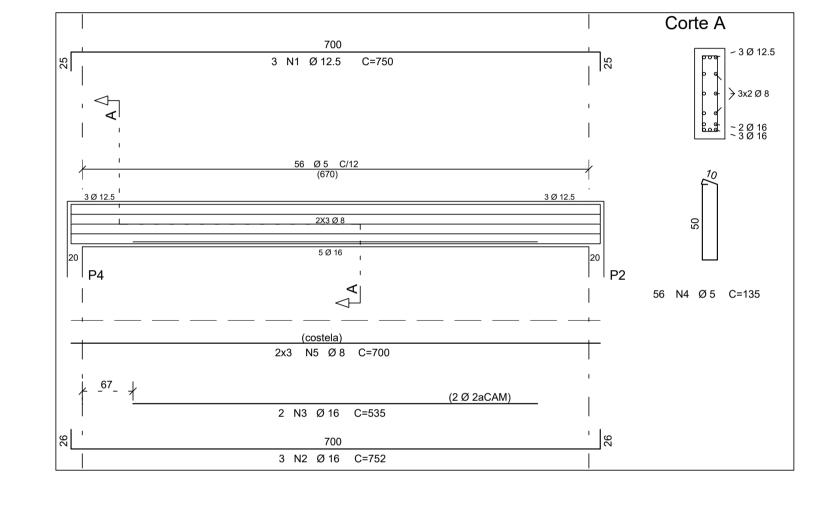
03/04


PROJETO EXECUTIVO PROJETO ESTRUTURAL ESTAÇÃO ELEVATÓRIA EE-03 ARMAÇÃO

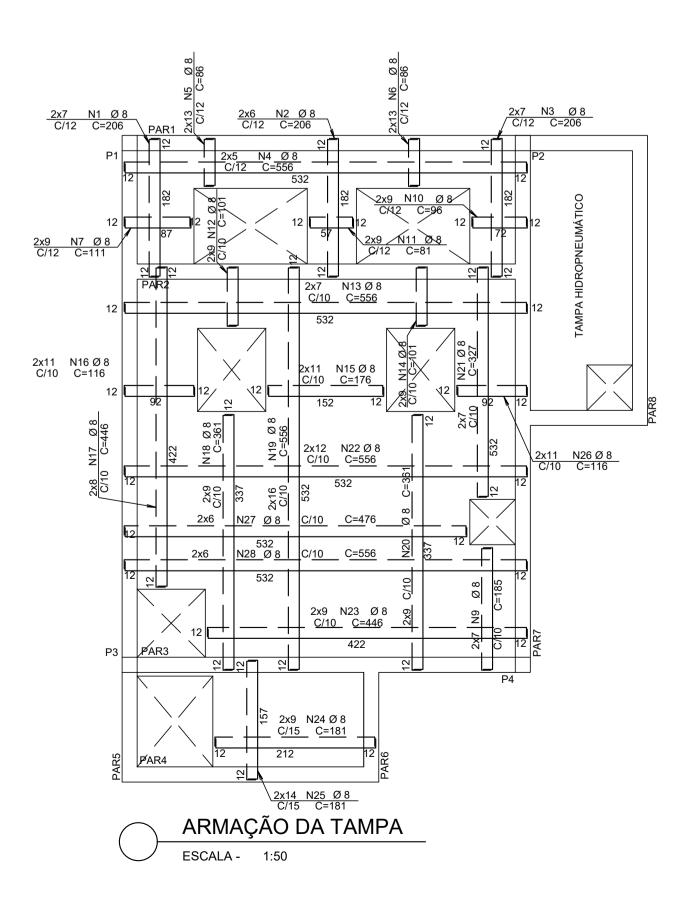

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA				
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIROZ				
PROJETO:	ENGO CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 011	840/D			
DESENHO:	EQUIPE ML	ESCALA:	INDICADA		
ARQUIVO:	0648ST-003-EST-R00.DWG	DATA:	MAIO/2019		

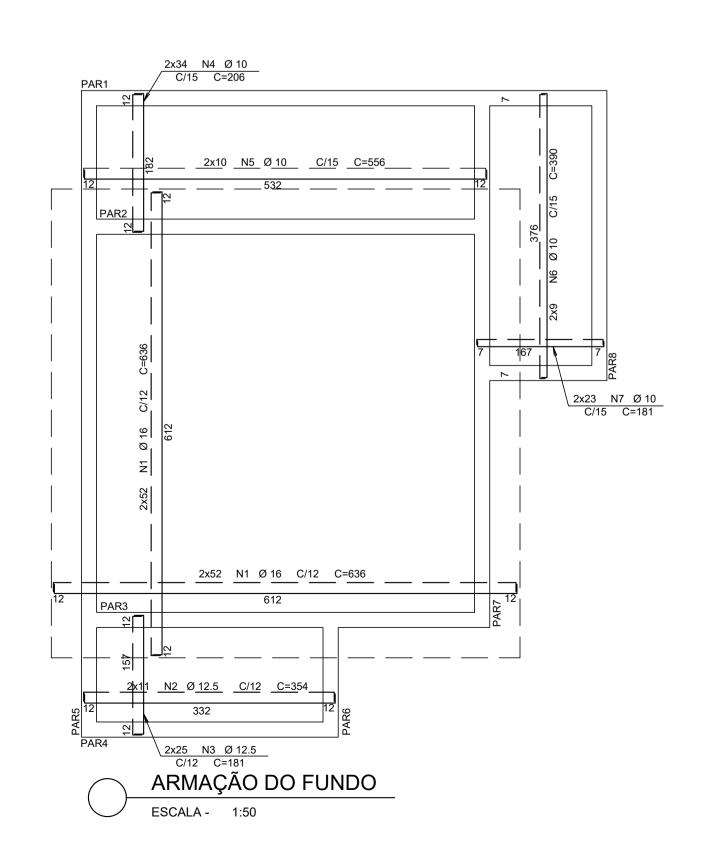
V4-COBERTURA 20X60

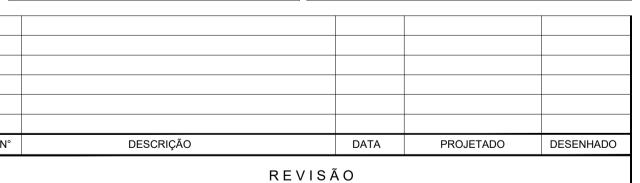




BIT QUANT COMPRIMENTO


UNIT TOTAL


50A	5	8	60	154	9240
	RESUN	//O AÇO CA	50-60		
AÇO	BIT	COM	PR	F	PESO
	(mm)	(m)		(kg)
60B	5	325			50
50A	6.3	93			23
50A	8	1562			617
50A	10	405			250
50A	12.5	366			353
50A	16	1389			2192
Peso Total	60B =			50 kg	
Peso Total	50A =		•	3435 kg)


		CORTE A-A 2X30 N5 Ø 8 C/10 C=154
		N4 M
02	6X14 N3 Ø 6.3 2X14 C/10 C=70 C/10 C/10 C/10 C/10 C/10 C/10 C/10 C/1	TAMPA HIDROPNEUMÁTICO
بر و	2X8 N2 Ø 6.3 2X8 N2 Ø 6.3 C/10 C=73	
		CORTE B-B
		86 2x6 N1 Ø 8 C/10 C=96
		N1

NOTAS:	
1 - COTAS E DIMENSÕES EM CM.	LAJES: 5.0CM SAPATAS: 5.0CM
2 - CONCRETO : FCK = 40MPA	PILARES: 5.0CM VIGAS: 5.0CM
MÓDULO DE ELASTICIDADE : ECS = 30GPA	BLOCOS: 5.0CM TUBULÃO: 5.0CM
FATOR ÁGUA CIMENTO : A/C <=0.45	RADIER: 5.0CM
CONSUMO DE CIMENTO : 350KGF/M3	13 - NORMA DE FÔRMAS E ESCORAMENTOS :NBR 15696/2009
3 - ACOS : CA-50 - FYK = 500 MPA	FÓRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO
CA-60 - FYK = 600 MPA	PROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS
4 - CONCRETO DE REGULARIZAÇÃO:	14 - NORMA DE CARGAS : NBR 6120/1980
MÓDULO DE ELASTICIDADE : ECS = 18.5GPA	CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES
ESPESSURA : 5.0CM	15 - NORMA DE CÁLCULO : NBR 6118/2014
CONSUMO DE CIMENTO : 250KGF/M3	PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO
5 - AS COTAS PREVALECEM SOBRE O DESENHO	16 - NORMA DE FUNDAÇÕES : NBR 6122/2010
6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = IV	PROJETO E EXECUÇÃO DE FUNDAÇÕES
7 - FATOR DO TERRENO:SI = 1.0	17 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012
8 - CATEGORIA DE RUGOSIDADE:S2 = I	PROJETO DE ESTRUTURAS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO
9 - CLASSE DA EDIFICAÇÃO:S2 = C	18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004
10 - FATOR ESTATÍSTICO:S3 = 1.00	EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO
11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S	19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS
12 - COBRIMENTO DAS ARMADURAS :	TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBRAS

Cagece

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ
DIRETORIA DE ENGENHARIA
GERÊNCIA DE PROJETOS DE ENGENHARIA

DESENHO PRANCHA N°
04/04

GERÊNCIA DE ENGENHARIA

01 04/04

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA

PROJETO EXECUTIVO

PROJETO ESTRUTURAL

ESTAÇÃO ELEVATÓRIA EE-03

ARMAÇÃO

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA					
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIROZ					
PROJETO:	ENG° CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 011840/D					
DESENHO:	EQUIPE ML	ESCALA:	INDICADA			
ARQUIVO:	0648ST-004-EST-R00.DWG	DATA:	MAIO/2019			

Resumo Estrutural por Elementos

RESUMO ESTRUTURAL POR ELEMENTOS

TOTAL

14,00

SAPATAS

1,50

PILAR

1,50

	010	A DO GERADOR TI	DO (DASE DADA)	DADASETPI7A	cão)
	CAS	CONCRETO E	STRUTURAL - Fci	= 30 MPa	çnoj
	LAJES	PISO	CINTAS	VIGA5	
VOLUME (m³)	3,00	4,00	2,00	2,00	
	LAJES				
AÇO	BIT (mm)	COMPR (m)	PESO (kg)		
60B	5	407	65		
50A	6,3	65	16		
TOTA	AL	472	81		
	PISO		4		
AÇO	BIT (mm)	COMPR (m)	PESO (kg)		
60B	5	1680	269		
TOTA	AL	1680	269		
	CINTAS				
AÇO	BIT (mm)	COMPR (m)	PESO (kg)		
50A	10	146	37		
50A	12.5	97	97		
TOTA	AL	243	134		
	VIGAS				
AÇO	BIT (mm)	COMPR (m)	PESO (kg)		
608	5	154	25		
50A	10	182	115		
50A	12.5	34	34		
TOTA	AL.	370	174		
	PILAR				
AÇO	BIT (mm)	COMPR (m)	PESO (kg)		
60B	5	141	23		
50A	12.5	146	146	ı	
TOTA	AL	287	169		
	SAPATAS				
AÇO	BIT (mm)	COMPR (m)	PESO (kg)		
50A	12.5	96	96		

TOTAL

	TA	XA DE ARMADUR	A PARAMETRI	ZADA		
laje	5	6,3	8	10	12,5	
Armadura (kg)	334	16				350
Vol.concreto (m³)	14	14				
taxa paramet.	23,86	1,14				┞
viga,pilar,parede	5	6,3	8	10	12,5	
Armadura (kg)	48		<u> </u>	152	277	477
Vol.concreto (m³)	14			14	14	
taxa paramet.	3,43		10	10,86	19,79	
sapata	5	6,3	8	10	12,5	
Armadura (kg)					96	96
Vol.concreto (m²)	14				14	
taxa paramet.			STATE OF		6,86	

96

96

RESUMO ESTRUTURAL POR ELEMENTOS

CAIXA DE DESCARGA, VENTOSA, QUEBRA DE PRESSÃO, TRAVESSIAS (BASE PARA PARAMETRIZAÇÃO)

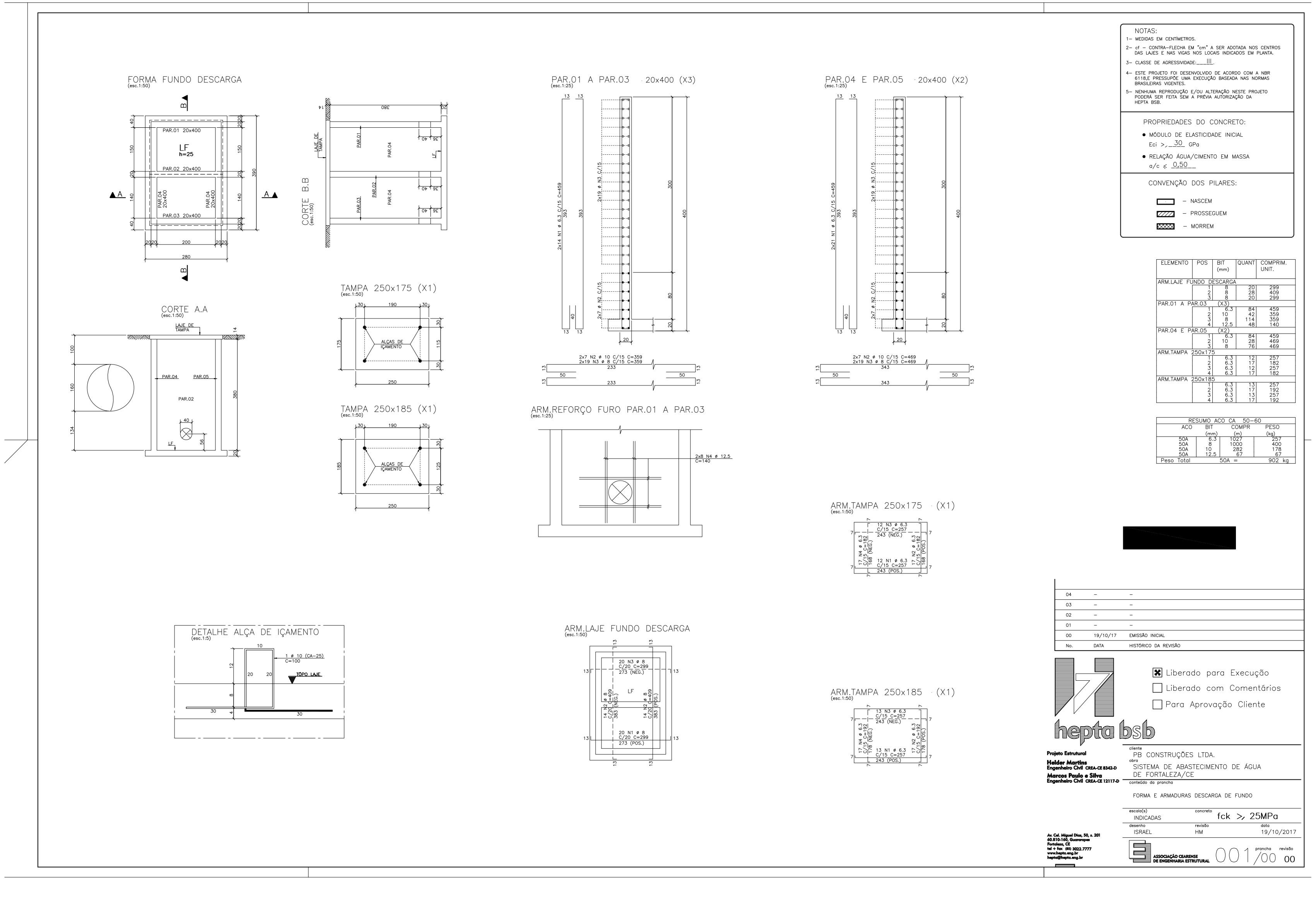
	LAJE DE FU	NDO	
AÇO	BIT (mm)	COMPR (m)	PESO (kg)
50A	8	234,12	93,648
TO'	TAL	234,12	93,648
	LAJE DE TA	MPA	
AÇO	BIT (mm)	COMPR (m)	PESO (kg)
50A	6,3	255,66	63,915
		255,66	63,915
	PAREDE	S	
AÇO	BIT (mm)	COMPR (m)	PESO (kg)
50A	6,3	771,12	192,78
50A	8	765,7	306,28
50A	10	282,1	177,723
50A	12.5	67,2	67,2
TO	TAL	1886,12	743,983

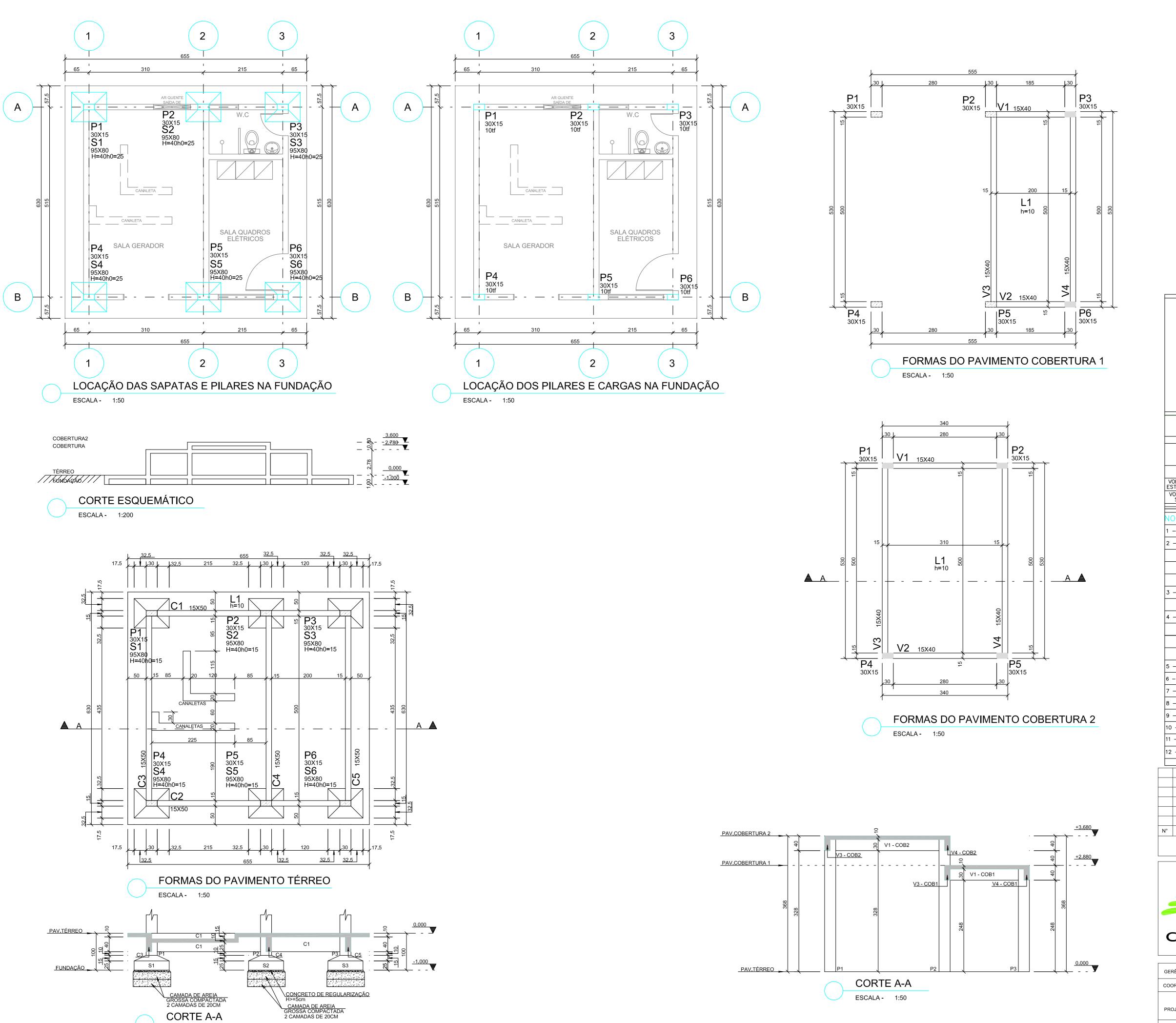
Volume de concreto

Laje de fundo	2,184
Paredes	10,792
Laje da tampa	1,5288
	14,50

		TAXA DE ARMAI	DURA PARAMET	RIZADA		
laje	5	6,3	8	10	12,5	
Armadura (kg)		63,915	93,648			157,56
Vol.concreto (m³)		14,5	14,5			_
taxa parametrizada		4,41	6,46			
			2 No. 10 No.			
viga,pilar,parede	5	6,3	8	10	12,5	
Armadura (kg)		192,78	306,28	177,723	67,2	743,98
Vol.concreto (m³)		14,5	14,5	14,5	14,5	
taxa parametrizada		13,30	21,12	12,26	4,63	

Lec. Tiago Cavalcante Lima Supervisor de Organentos de Projetos GPROJ CAGECE


Anexos - Projeto Adotado como Parâmetro para Dimensionamento de Caixas



PEÇAS GRÁFICAS

Relação de Plantas:

DESENHO:	PRANCHA:	TÍTULO:
01	01/01	Formas e Armaduras Descarga de Fundo
02	01/02	Casa do Gerador Tipo - Formas e Cortes
02	02/02	Casa do Gerador Tipo - Armação

ESCALA - 1:50

QUANTITATIVOS

			EL	EMENTO	S ESTRU	ITURAIS		
	LAJES	piso	cintas	VIGAS	PILAR	sapatas	CAIXAS	TOTAL
ÁREA DE FORMAS (m2)	26.00	3.00	26.00	25.00	24.00	6.00	xxx	110.00
VOLUME DE CONCRETO ESTRUTURAL 30MPA(m3	3.00	4.00	2.00	2.00	1.50	1.50	xxx	14.00
VOLUME DE CONCRETO SIMPLES 15MPA(m3)	xxx	2.00	xxx	XXX	XXX	0.2	xxx	2.20

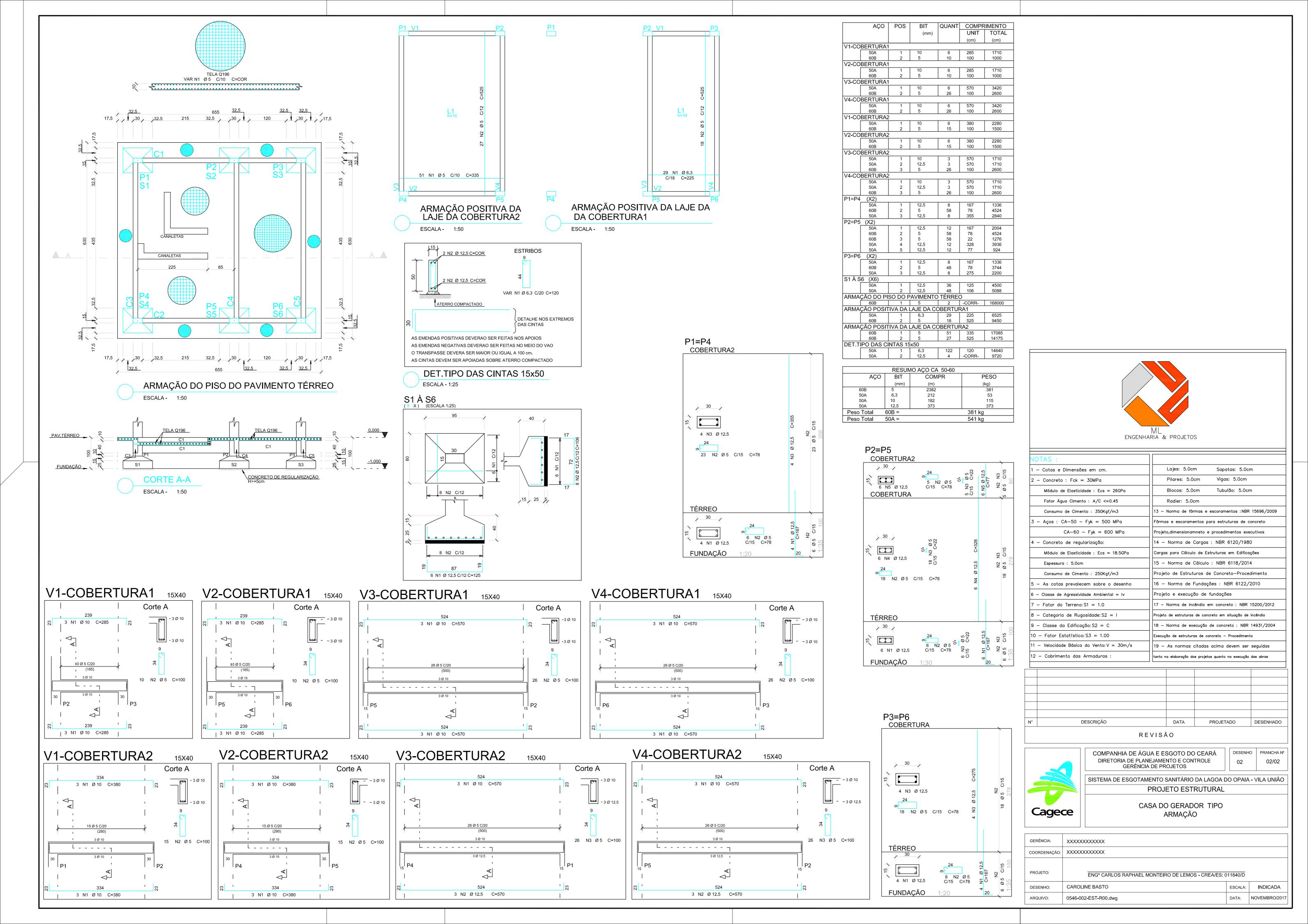
NOTAS :	
1 — Cotas e Dimensões em cm.	Lajes: 5.0cm Sapatas: 5.0cm
2 - Concreto : Fck = 30MPa	Pilares: 5.0cm Vigas: 5.0cm
Módulo de Elasticidade : Ecs = 26GPa	Blocos: 5.0cm Tubulão: 5.0cm
Fator Água Cimento : A/C <=0.45	Radier: 5.0cm
Consumo de Cimento : 350Kgf/m3	13 — Norma de fôrmas e escoramentos :NBR 15696/2009
3 - Aços : CA-50 - Fyk = 500 MPa	Fôrmas e escoramentos para estruturas de concreto
CA-60 - Fyk = 600 MPa	Projeto,dimensionamneto e procedimentos executivos
4 — Concreto de regularização:	14 — Norma de Cargas : NBR 6120/1980
Módulo de Elasticidade : Ecs = 18.5GPa	Cargas para Cálculo de Estruturas em Edificações
Espessura : 5.0cm	15 — Norma de Cálculo : NBR 6118/2014
Consumo de Cimento : 250Kgf/m3	Projeto de Estruturas de Concreto—Procedimento
5 — As cotas prevalecem sobre o desenho	16 — Norma de Fundações : NBR 6122/2010
6 — Classe de Agressividade Ambiental = Iv	Projeto e execução de fundações
7 — Fator do Terreno: S1 = 1.0	17 — Norma de incêndio em concreto : NBR 15200/2012
8 — Categoria de Rugosidade: S2 = I	Projeto de estruturas de concreto em situação de incêndio
9 — Classe da Edificação: S2 = C	18 — Norma de execução de concreto : NBR 14931/2004
10 - Fator Estatístico:S3 = 1.00	Execução de estruturas de concreto — Procedimento
11 - Velocidade Básica do Vento:V = 30m/s	19 — As normas citadas acima devem ser seguidas
12 — Cobrimento das Armaduras :	tanto na elaboração dos projetos quanto na execução das obras

DESCRIÇÃO DATA PROJETADO DESENHADO

REVISÃO

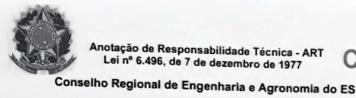
COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE PLANEJAMENTO E CONTROLE GERÊNCIA DE PROJETOS

SISTEMA DE ESGOTAMENTO SANITÁRIO DA LAGOA DO OPAIA - VILA UNIÃO PROJETO ESTRUTURAL


DESENHO PRANCHA Nº

01/02

02


CASA DO GERADOR TIPO FORMAS E CORTES

GERÊNCIA:	XXXXXXXXXX		
COORDENAÇÃO:	xxxxxxxxxx		
PROJETO:		14040/5	
TROSETO.	ENGº CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 0)11840/D	
DESENHO:	ENG° CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 0 CAROLINE BASTO	ESCALA:	INDICADA

ART

Anotação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977

CREA-ES

ART de Obra ou Serviço 0820180124699

ART Individual

1. Responsável Técnico

CARLOS RAPHAEL MONTEIRO DE LEMOS

Título profissional: ENGENHEIRO CIVIL

Empresa contratada: ML PROJETOS EIRELI ME

RNP: 0800128168 Registro: ES-011840/D

Registro: 14177

Nº:

2. Dados do Contrato

Contratante: COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ

Rua: AVENIDA AVENIDA LAURO VIEIRA CHAVES

Complemento:

Cidade: FORTALEZA Telefone: 8531011769

Contrato: 74/2017

Valor do Contrato/Honorários: R\$1.000,00

UF: CE

CEP: 60422700 Bairro: AEROPORTO

CPF/CNPJ: 07040108000157

Nº do Aditivo:

Dimensão/Quantidade: 78098

Tipo de contratante: PESSOA JURÍDICA

3. Dados da Obra/Serviço

Rua: AVENIDA AVENIDA LAURO VIEIRA CHAVES

Complemento:

Cidade: FORTALEZA Data de início: 27/06/2017

Bairro: AEROPORTO

UF: CF

Prev. Término: 26/12/2019 Proprietário: COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ

No. Quadra

Lote CEP: 60422700 Coord. Geogr.:

CPF/CNPJ:07040108000157

Unidade de medida: M2

4. Atividade Técnica

Qtde de Pavimento(s): 0

Nº Pavimento(s): 0

ATIVIDADE(S) TÉCNICA(S): 35 - 5.1 - ELABORAÇÃO DE PROJETO

PARTICIPAÇÃO:

NATUREZA: 103 - AUTORIA NÍVEL: 104 - EXECUÇÃO

NATUREZA DO(S) SERVIÇO(S): 1105 - SISTEMA DE ABASTECIMENTO DE ÁGUA E/OU ESGOTO SANITÁRIO, 1203 - TRATAMENTO D ÁGUA, 1204 - TRATAMENTO DE ESGOTO E RESIDUOS, 9111 - SERVIÇOS AFINS E CORRELATOS (ESPECIFICAR NO CAMPO 22)

TIPO DA OBRA/SERVIÇO: 202 - FUNDAÇÕES,222 - ESTRUTURAS DE CONCRETO,406 - ESTAÇÕES DE TRATAMENTO DE ESGOTO,407 - ESTAÇÕES DE TRATAMENTO

PROJETO(S)/SERVIÇO(S): 2 - PROJETO ESTRUTURAL,7 - PROJETO DE FUNDAÇÕES

Após a conclusão das atividades técnicas, o profissional deverá proceder a baixa desta ART.

5. Observações

CONFORME CONTRATO Nº74/2017

6. Declarações

Acessibilidade: <declara a aplicabilidade das regras de acessibilidade previstas nas normas técnicas da ABNT, na legislação específica e no Decreto nº5.296, de 2 de dezembro de 2004, às atividades profissionais acima relacionadas.>

7. Entidade de classe

NENHUMA ENTIDADE

8. Assinaturas

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ - CPF/CNPJ: 07040108000157

CARLOS RAPHAEL MONTEIRO DE LEMOS - CPF: 04

9. Informações

- A ART é válida somente quando quitada, podendo sua conferência ser realizada no site do CREA.
- A autenticidade deste documento pode ser verificada no site www.creaes.org.br ou www.confea.org.br
- A guarda da via assinada da ART será de responsabilidade do profissional e do contratante com o objetivo de documentar o vinculo contratual.

www.creaes.org.br tel: (27)3134-0046

creaes@creaes.org.br art@creaes.org.br

Valor ART: R\$ 82,94

Registrada em: 14/11/2018 Data de pagamento: 22/11/2018

Valor Pago: R\$ 82,94

Nosso Número: 14000000002555366