Companhia de Água e Esgoto do Ceará

DEN - Diretoria de Engenharia GPROJ - Gerência de Projetos de Engenharia

Fortaleza - CE

Projeto Básico de Ampliação e Melhorias da Estação Elevatória Praia do Futuro 2 e Linha de Recalque.

VOLUME IV Projeto Estrutural

Cagece

Cagece - Companhia de Água e Esgoto do Ceará

DEN – Diretoria de Engenharia GPROJ – Gerência de Projetos

EQUIPE TÉCNICA DA GPROJ – Gerência de Projetos Produto: Projeto Básico De Ampliação e Melhorias da Estação Elevatória Praia do Futuro 2 e Linha de Recalque.

Gerente de Projetos

Engo. Raul Tigre de Arruda Leitão

Coordenação de Projetos Técnicos

Engo. Celso Lira Ximenes Júnior

Coordenação de Serviços Técnicos de Apoio

Engo. Gerardo Frota Neto

Engenheiros Projetistas

Enga. Larissa Goncalves Maia Caracas

Desenhos

João Maurício e Silva Neto Paulo Helano Pinheiro Veras

Engenheira Eletricista

Enga. Amanda Rodrigues Rangel

Engo. Marcos Leno Ferreira Pompeu

Desenhos dos Projetos Elétricos

Roberto Pinheiro Sampaio

Edição

Janis Joplin Saara Moura Queiroz Sibelle Mendes Lima

Arquivo Técnico

Patrícia Santos Silva

Colaboração

Ana Beatriz Caetano de Oliveira

I - APRESENTAÇÃO

O presente relatório consiste na readequação da Estação Elevatória de Esgoto Praia do Futuro 2 no município de Fortaleza/CE. O projeto é composto por estação elevatória e linha de recalque. No quadro 01, encontra-se o resumo do projeto.

Quadro 01 - Processo motivador do projeto

Processo	Data	Interessado	Assunto
0766.000689/2017-23	01/11/2017	DDO	Projeto de tratamento preliminar da PF-2

Este projeto constitui-se de 4 (quatro) volumes, com os seguintes elementos:

- Volume I
 - Tomo I Memorial Descritivo, Memória de Cálculo e ART;
 - Tomo II Orçamento.
- Volume II
 - Tomo I Peças Gráficas;
 - Tomo I Peças Gráficas.
- Volume III Projeto Elétrico
 - Tomo I Automação;
 - Tomo II Elétrico.
- Volume IV Projeto Estrutural

Memorial Descritivo

MEMORIA DE CÁLCULO – EEE-PF2

Serra/ES

02 de Julho de 2019

1.1 OBJETIVO

Este presente trabalho visa desenvolver o projeto estrutural da EEE-PF2.

1.2 DOCUMENTOS DE REFERÊNCIA

Os documentos relacionados foram utilizados na elaboração deste documento ou contêm instruções e procedimentos aplicáveis a ele. Devem ser utilizados na sua revisão mais recente: 04_SES_EEE-PF2_Arquitetura_01-10

1.3 INTRODUÇÃO

O presente trabalho complementa as pranchas de armação e formas relativas à: estação elevatória de esgoto PF2.

O dimensionamento dos elementos citados fora executado tomando como base as normas que seguem:

- NBR 6118 Projeto de estruturas de concreto Procedimentos
- NBR 6120 Cargas para o cálculo de estruturas de edificações
- NBR 6122 Projeto e execução de fundações
- NBR 6123 Força devidas ao vento em edificações
- NBR 8681:2003 Ações e segurança nas estruturas Procedimentos.

Documentos técnicos e livros como:

- Resistência do Materias, V. Feodosiev
- Curso de Concreto Armado, José Milton de Araújo

Além dos softwares de dimensionamento e análise hiperestática: STRAP 2011

1.4 CARACTERÍSTICAS GERAIS DO PROJETO

- Fck: 40 MPa
- Fator água-cimento: 0.45 (máximo)
- Aço CA 50 e CA 60
- Es: 210 GPa
- Deformação limite do aço para dimensionamento: 10%.
- Grau de agressividade do Meio Ambiente: IV (NBR 6118/2014)
- Limite de abertura de Fissuras ≤ 0.2 mm
- Dimensão máxima do agregado graúdo: 25 mm
- Método para análise de 2° Ordem Global: Gama Z
- Compactação com Proctor normal à 100%

Classe de Agressividade Ambiental NBR6118:2014

Classe de agressividade ambiental	gressividade Agressividade Classificação geral do tipo de		Risco de deterioração da estrutura	
	France	Rural	Incignificants	
1	Fraca	Submersa	Insignificante	
II	Moderada	Urbana ^{a, b}	Pequeno	
111	/// Flat	Marinha ^a		
III	Forte	Industrial a, b	Grande	
IV	Muita fauta	Industrial ^{a, c}	Flaunda	
	Muito forte	Respingos de maré	Elevado	

- Pode-se admitir um microclima com uma classe de agressividade mais branda (uma classe acima) para ambientes internos secos (salas, dormitórios, banheiros, cozinhas e áreas de serviço de apartamentos residenciais e conjuntos comerciais ou ambientes com concreto revestido com argamassa e pintura).
- Pode-se admitir uma classe de agressividade mais branda (uma classe acima) em obras em regiões de clima seco, com umidade média relativa do ar menor ou igual a 65 %, partes da estrutura protegidas de chuva em ambientes predominantemente secos ou regiões onde raramente chove.
- C Ambientes quimicamente agressivos, tanques industriais, galvanoplastia, branqueamento em indústrias de celulose e papel, armazéns de fertilizantes, indústrias químicas.
- Cobrimento de acordo com a Classe de Agressividade Ambiental NBR6118:2014

		Classe de agressividade ambiental (Tabela 6.1)				
Tipo de estrutura	Componente ou	L	П	Ш	IV c	
ripo de estrutura	elemento	Cobrimento nominal mm				
	Laje ^b	20	25	35	45	
	Viga/pilar	25	30	40	50	
Concreto armado	Elementos estruturais em contato com o solo ^d	3	30	40	50	
Concreto	Laje	25	30	40	50	
protendido a	Viga/pilar	30	35	45	55	

- ^a Cobrimento nominal da bainha ou dos fios, cabos e cordoalhas. O cobrimento da armadura passiva deve respeitar os cobrimentos para concreto armado.
- b Para a face superior de lajes e vigas que serão revestidas com argamassa de contrapiso, com revestimentos finais secos tipo carpete e madeira, com argamassa de revestimento e acabamento, como pisos de elevado desempenho, pisos cerâmicos, pisos asfálticos e outros, as exigências desta Tabela podem ser substituídas pelas de 7.4.7.5, respeitado um cobrimento nominal ≥ 15 mm.
- Nas superfícies expostas a ambientes agressivos, como reservatórios, estações de tratamento de água e esgoto, condutos de esgoto, canaletas de efluentes e outras obras em ambientes química e intensamente agressivos, devem ser atendidos os cobrimentos da classe de agressividade IV.
- d No trecho dos pilares em contato com o solo junto aos elementos de fundação, a armadura deve ter cobrimento nominal ≥ 45 mm.

Limite de Abertura de Fissuras de acordo com a Classe de Agressividade Ambiental NBR6118:2014

Tabela 13.4 – Exigências de durabilidade relacionadas à fissuração e à proteção da armadura, em função das classes de agressividade ambiental

Tipo de concreto estrutural	Classe de agressividade ambiental (CAA) e tipo de protensão	Exigências relativas à fissuração	Combinação de ações em serviço a utilizar		
Concreto simples	CAA I a CAA IV	Não há	-		
	CAAI	ELS-W w _k ≤ 0,4 mm	·		
Concreto armado	CAA II e CAA III	ELS-W <i>w</i> _k ≤ 0,3 mm	Combinação frequente		
	CAA IV	ELS-W $w_k \le 0.2 \text{ mm}$			
Concreto protendido nível 1 (protensão parcial)	Pré-tração com CAA I ou Pós-tração com CAA I e II	ELS-W <i>w</i> _k ≤ 0,2 mm	Combinação frequente		
Concreto	Pré-tração com CAA II	Verificar as duas condições abaixo			
protendido nível 2	ou	ELS-F	Combinação frequente		
(protensão limitada)	Pós-tração com CAA III e IV	ELS-D a	Combinação quase permanente		
Concreto	Concreto		s condições abaixo		
protendido nível 3 (protensão	Pré-tração com CAA III e IV	ELS-F	Combinação rara		
completa)		ELS-D a	Combinação frequente		

 $^{^{\}rm a}$ A critério do projetista, o ELS-D pode ser substituído pelo ELS-DP com $a_{\rm p}$ = 50 mm (Figura 3.1). NOTAS

Fator Água-Cimento de acordo com a Classe de Agressividade Ambiental NBR6118:2014

Tabela 7.1 - Correspondência entre a classe de agressividade e a qualidade do concreto

Concreto a	Tipo b, c	Classe de agressividade (Tabela 6.1)					
Concreto	Tipo 5,5	1	H	111	IV		
Relação	CA	≤ 0,65	≤0,60	≤ 0,55	≤ 0,45		
água/cimento em massa	CP	≤ 0,60	≤ 0,55	≤ 0,50	≤ 0,45		
Classe de concreto (ABNT NBR 8953)	CA	≥ C20	≥ C25	≥ C30	≥ C40		
	CP	≥ C25	≥ C30	≥ C35	≥ C40		

O concreto empregado na execução das estruturas deve cumprir com os requisitos estabelecidos na ABNT NBR 12655.

¹ As definições de ELS-W, ELS-F e ELS-D encontram-se em 3.2.

² Para as classes de agressividade ambiental CAA-III e IV, exige-se que as cordoalhas não aderentes tenham proteção especial na região de suas ancoragens.

³ No projeto de lajes lisas e cogumelo protendidas, basta ser atendido o ELS-F para a combinação frequente das ações, em todas as classes de agressividade ambiental.

b CA corresponde a componentes e elementos estruturais de concreto armado.

CP corresponde a componentes e elementos estruturais de concreto protendido.

Dimensão máxima do agregado graúdo - NBR6118:2014

7.4.7.6 A dimensão máxima característica do agregado graúdo utilizado no concreto não pode superar em 20 % a espessura nominal do cobrimento, ou seja:

dmáx ≤ 1,2 cnom

2.0 MODELO DE CÁLCULO

Laje de piso do reservatório apoiado sobre base elástica. O campo de deslocamentos e tensões foi calculada adotando-se a metodologia implementada pelo software comercial STRAP VERSÃO 2011.

CARGAS E COMBINAÇÕES

Ações Permanentes:

- g1 Peso próprio do concreto (permanente direta)
- g2 Empuxo de terra (permanente direta)
- q1 Água

Ações Variáveis Acidentais:

• q2 - Sobrecarga

Coeficientes de ponderação (γg , γq), fatores de combinação (ψq), e fatores de redução ($\psi 1$, $\psi 1$) para:

- Combinação Normal (CN) em Estado Limite de Utilização (ELU);
- Combinação Quase Permanente (CQP) em Estado Limite de Serviço (ELS);
- Combinação Frequente (CF) em Estado Limite de Serviço (ELS).

	CN-ELU	CQP-ELS	CF-ELS
Ações Permanentes:	γg	γg	γg
Cargas permanentes	1,4	1	1
Retração	1,2	1	1
Ações Variáveis (qdo. princ.):	γq	γq	γq
Sobrecarga	1,4	1	1
Empuxo hidrostático	1,4	1	1
Gradiente térmico	1,2	1	1
Ações Variáveis (qdo. secnd.):	ψ0	ψ1	ψ2
Sobrecarga	0,8	0,7	0,6
Empuxo hidrostático	0,8	0,7	0,6
Gradiente térmico	0,6	0,5	0,3

Grandezas Físicas das Ações:

- g1 Peso próprio do concreto = Volume dos elementos multiplicado pelo peso específico do concreto armado. Unidades: peso em tf e o volume em m³.
- g2 -Empuxo de terra

Argila com areia fina cor variegada

 $\gamma t = 18,00 \text{ kN/m}^3 \text{ Godoy}, 1972$

 $\phi = 0^{\circ}$ K0 = 1,00 K0 = 1 - sen ϕ

 $p = K0.\gamma t.h$

- g3 Enchimentos = Volume do elemento multiplicado pelo peso específico do material. Unidades: peso em tf e volume em m³.
- g4 Retração: Não Consideramos uma retração em toda a estrutura
- q1 Empuxo Hidrostático interno: Em todas as faces internas estão sendo aplicada uma pressão de base ao topo. O peso específico utilizado no cálculo destas pressões é o da água, igual a 1tf/m³ multiplicado pela altura da lâmina d'água.
- q2 Sobrecarga: Nas lajes de tampa e escadas foram consideradas sobrecargas de utilização iguais a 0,3 tf/m².
- q3 gradiente térmico: Não foi considerado, as estruturas estão enterradas e as partes expostas têm pequenas dimensões e em consequência as deformações devido ao gradiente térmico são insignificantes.

Combinações:

Estado Limite Último - ELU-CN (cheio):

C01 = 1,40.(g1+g3)+g2+1,40.q1+1,20.q2

C02 = 1,40.(g1+g3)+g2+1,40.q2+1,20.q1

Estado Limite Último - ELU-CN (vazio):

C03 = 1,40.(g1+g2+g3)+1,40.q2

Estado Limite de Serviço ELS-CF (cheio)

C05 = 1,00.(g1+g2+g3)+0,70.q1+0,60.q2

C06 = 1,00.(g1+g2+g3)+0,70.q2+0,60.q1

Estado Limite de Serviço ELS-CF (vazio)

C07 = 1,00.(g1+g2+g3)+0,70.q2

Especial, para verificação da flutuação

C08 = 1,00.(g1+g3)+1,00.q4

2.1 DIMENSIONAMENTO DAS SEÇÕES

Os cálculos de paredes e lajes de fundo e tampas foram considerados um elemento estrutural de 100 cm de largura e altura h, para o dimensionamento a flexo-tração com a força da envoltória máxima nas direções x e y e momentos da envoltória máxima e mínima nas direções x e y. A compressão aqui foi desprezada por entender que a solicitação máxima acontece quando o elemento estrutural em questão é tracionado junto com a flexão.

Após a verificação da flexo-tração o elemento foi verificado com relação à formação de fissuras.

Momento mínimo para a dispensa de análise de fissuração (ESTÁDIO I e II):

$$M_R = a f_{ct} I_o / y_t [tf. m] \tag{1}$$

Calculando teremos, M_r para um fck = 40 MPa e h variado igual à:

• h=15cm; $M_r = 3,45tf.m$

h=20cm; M_r = 4,60tf.m

h=25cm; M_r = 5,75tf.m

h=30cm; M_r = 6,90tf.m

• h=40cm; M_r = 9,20tf.m

Armadura mínima prevista em norma:

$$A_{s,min} = \rho_{min} 100h \left[\frac{cm^2}{m}\right] \tag{2}$$

Sendo ho_{min} taxa de armadura mínima conforme a NBR 6118:2003

Tabela 17.3 - Taxas mínimas de armadura de flexão para vigas								
Forma da seção		Valores de ρ _{min} ¹) (A _{s,min} /A _c) %						
Folilla da Seçao	f_{ck} ω_{min}	20	25	30	35	40	45	50
Retangular	0,035	0,150	0,150	0,173	0,201	0,230	0,259	0,288
T (mesa comprimida)	0,024	0,150	0,150	0,150	0,150	0,158	0,177	0,197
T (mesa tracionada)	0,031	0,150	0,150	0,153	0,178	0,204	0.229	0,255
Circular	0,070	0,230	0,288	0,345	0,403	0,460	0,518	0,575

 $^{^{1)}}$ Os valores de ρ_{min} estabelecidos nesta tabela pressupõem o uso de aço CA-50, γ_c = 1,4 e γ_s = 1,15. Caso esses fatores sejam diferentes, ρ_{min} deve ser recalculado com base no valor de ω_{min} dado.

NOTA - Nas seções tipo T, a área da seção a ser considerada deve ser caracterizada pela alma acrescida da mesa colaborante.

Calculando teremos, $A_{s,min}$ para um fck = 40MPa, b=100cm, seção retangular e h variado igual à:

• h=15cm; $A_{s,min} = 3,45cm^2/m$ Ø8 C/12 ou Ø10 C/20

• h=20cm; $A_{s,min} = 4,60 \text{cm}^2/\text{m}$ Ø8 C/10 ou Ø10 C/25

• h=25cm; $A_{s,min} = 5.75 \text{cm}^2/\text{m}$ Ø10 C/12 ou Ø12,5 C/20

• h=30cm; $A_{s,min} = 6.90 \text{cm}^2/\text{m}$ Ø10 C/10 ou Ø12,5 C/15

• h=40cm; $A_{s,min}$ = 9,20cm²/m Ø12,5 C/12 ou Ø16 C/20

2.2 SEÇÕES DE CONCRETO UTILIZADAS

Foram utilizadas as seguintes seções de concreto para as respectivas estruturas:

EEE-PF2:

Paredes: 40cm e 30cm

Fundo: 40cm e 30cm

Tampa: 40cm e 30cm

2.3 FUNDAÇÃO

Para a estrutura do Reservatório utilizamos a laje de fundo apoiada diretamente sobre o solo. Como modelo de cálculo adotamos um sistema de molas de resposta linear. Para obter a tensão média admissível a partir desse ensaio, utiliza-se o número médio de golpes aplicando a seguinte fórmula:

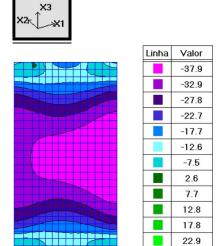
s = 0.20 * SPT Médio (kgf/m²)

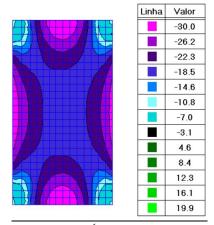
A partir dos valores de tensão média admissível é possível obter o valor de Kv por correlação, utilizando a tabela abaixo:

Tensão admissível (kgf/cm²)	Kv (kgf/cm³)	Tensão admissível (kgf/cm²)	Kv (kgf/cm³)
0,25	0,65	2,15	4,30
0,30	0,78	2,20	4,40
0,35	0,91	2,25	4,50
0,40	1,04	2,30	4,60
0,45	1,17	2,35	4,70
0,50	1,30	2,40	4,80
0,55	1,39	2,45	4,90
0,60	1,48	2,50	5,00
0,65	1,57	2,55	5,10
0,70	1,66	2,60	5,20
0,75	1,75	2,65	5,30
0,80	1,84	2,70	5,40
0,85	1,93	2,75	5,50
0,90	2,02	2,80	5,60
0,95	2,11	2,85	5,70
1,00	2,20	2,90	5,80
1,05	2,29	2,95	5,90
1,10	2,38	3,00	6,00
1,15	2,47	3,05	6,10
1,20	2,56	3,10	6,20
1,25	2,65	3,15	6,30
1,30	2,74	3,20	6,40
1,35	2,83	3,25	6,50
1,40	2,92	3,30	6,60
1,45	3,01	3,35	6,70
1,50	3,10	3,40	6,80
1,55	3,19	3,45	6,90
1,60	3,28	3,50	7,00
1,65	3,37	3,55	7,10
1,70	3,46	3,60	7,20
1,75	3,55	3,65	7,30
1,80	3,64	3,70	7,40
1,85	3,73	3,75	7,50
1,90	3,82	3,80	7,60
1,95	3,91	3,85	7,70
2,00	4,00	3,90	7,80
2,05	4,10	3,95	7,90
2,10	4,20		

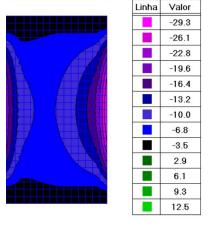
Fonte: Safe, Morrison (1993)

Para cálculo da EEE-PF2, utilizamos uma taxa de solo de 1,5Kgf/cm², conforme dados fornecidos do relatório de sondagem.



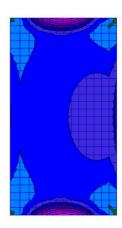


3.0 ESTAÇÃO ELEVATÓRIA DE ESGOTO PF2


3.1 FUNDO

FUNDO - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)

FUNDO – ENVOLTÓRIA DE CARREGAMENTOS MAX – FORÇAS NA DIREÇÃO DE Y (tf.m/m)



FUNDO – ENVOLTÓRIA DE CARREGAMENTOS MAX – MOMENTO NA DIREÇÃO DE X (tf.m/m)

Linha	Valor
	-14.3
	-12.8
	-11.3
	-9.8
	-8.3
	-6.8
	-5.3
	-3.8
	-2.3
	-0.8
	2.2
	3.7
	5.2

FUNDO – ENVOLTÓRIA DE CARREGAMENTOS MAX – MOMENTO NA DIREÇÃO DE Y (tf.m/m)

			Lajes	Maciças en	n Concr	eto Arm	ado				
Mate	eriais	Esfo	rços		Seção			SE	GURAN	NÇA	
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξmáx.	As,mín (cm²/m)	γο	γs	γf	Classe Agres.
500	40	16,40	37,90	40	5,3	0,4	9,20	1,40	1,15	1,40	Classe IV

ELU - Flexão Composta - Arm. Assimétrica							
Armadura necessária			Arranjo				
Armadura	lecessaria	Ф (mm)	Esp. (cm)	As,tet (cm²/m)			
As1 (cm²/m)	1	16	10,0	20,11			
As2 (cm²/m)	9,39	16	10,0	20,11			

Resumo - ELU						
Zona	ξ	ω1	ω2			
Zona D	0,139	0,000	0,048			

Verifica	Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO								
Mate	eriais	Esfo	rços	Seção					
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm) d' (cm) Bitola ø Esp. (cm					
500	40	16,4	37,9	40	5,3	16	10,0		
	Cálculo								
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)		
20,11	210.000	30.105	3,51	2,25	17,30	10,00	173,00		
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)		
6,98	0,011622077	0,338	11,72	166,39	-0,01	0,06412242	0,175416819		

FUNDO – FORÇA E MOMENTO X

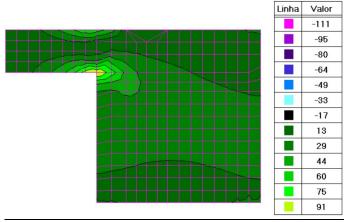
	Lajes Maciças em Concreto Armado										
Mate	eriais	Esfo	rços		Seção			SE	GURAN	IÇA	
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξmáx.	As,mín (cm²/m)	γο	γs	γf	Classe Agres.
500	40	9,80	22,30	40	5,1	0,4	9,20	1,40	1,15	1,40	Classe IV

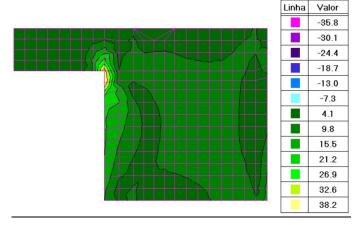
ELU - Flexão Composta - Arm. Assimétrica								
Armadura		Arranjo						
Armadura	necessaria	Ф (mm)	Esp. (cm)	As,tot (cm²/m)				
As1 (cm²m)	10	12,5	10,0	12,27				
As2 (cm²m)	5,33	12,5	10,0	12,27				

Resumo - ELU							
Zona	ξ	ω1	ω2				
Zona D	0,080	0,000	0,027				

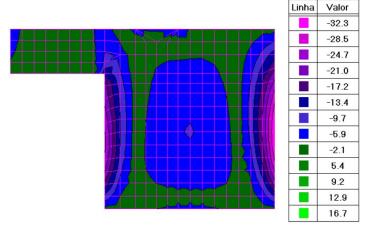
Verifica	Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO								
Mate	eriais	is Esforços Seção							
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm) d' (cm) Bitola ø Esp. (cm)					
500	40	9,8	22,3	40	5,125	12,5	10,0		
	Cálculo								
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)		
12,27	210.000	30.105	3,51	2,25	14,50	10,00	145,00		
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)		
6,98	0,008463342	0,277	9,67	155,97	0,00	0,04401998	0,170867914		

FUNDO – FORÇA E MOMENTO Y



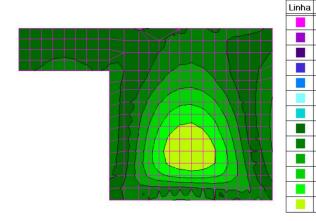


3.2 PAR 8



PAR8 - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)

PAR8 - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE Y (tf.m/m)



PAR8 – ENVOLTÓRIA DE CARREGAMENTOS MAX – MOMENTO NA DIREÇÃO DE X (tf.m/m)

PAR8 – ENVOLTÓRIA DE CARREGAMENTOS MAX – MOMENTO NA DIREÇÃO DE Y (tf.m/m)

	Lajes Maciças em Concreto Armado										
Mate	eriais	Esfo	rços	os Seção				SEGURANÇA			
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξmáx.	As,mín (cm²/m)	γο	γs	γf	Classe Agres.
500	40	17,20	60,00	40	5,1	0,4	9,20	1,40	1,15	1,40	Classe IV

Valor

-13.9 -12.0 -10.1 -8.2 -6.4 -4.5 -2.6 1.2 3.1 5.0 6.9 8.8 10.7

ELU	ELU - Flexão Composta - Arm. Assimétrica								
Armadura	nonceária	Arranjo							
Armauura	lecessaria	Ф (mm)	Esp. (cm)	As,tot (cm²/m					
As1 (cm²m)	-	12,5	12,0	10,23					
As2 (cm²lm)	6,51	12,5	12,0	10,23					

Resumo - ELU								
Zona	ω1	ω2						
Zona D	0,166	0,000	0,033					

Verifica	Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO								
Mate	Materiais Esforços Seção								
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)) h (cm) d' (cm) Bitola ø Esp. (cm)					
500	40	17,2	60	40	5,125	12,5	12,0		
	Cálculo								
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)		
10,23	210.000	30.105	3,51	2,25	14,50	12,00	174,00		
αs	αs ρri ξ x (cm) σsi (Mpa) Erro Wk1 (mm) Wk2 (mm)								
6,98	0,007052785	0,315	10,98	231,65	0,00	0,09709986	0,300114881		

PAR8 – FORÇA E MOMENTO X

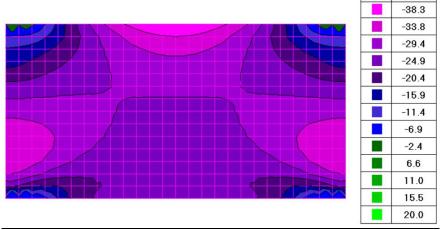
	Lajes Maciças em Concreto Armado										
Mate	eriais	Esfo	rços	Seção			SEGURANÇA				
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξmáx.	As,mín (cm²/m)	γο	γs	γf	Classe Agres.
500	40	10,70	21,20	40	5,3	0,4	9,20	1,40	1,15	1,40	Classe IV

ELU	ELU - Flexão Composta - Arm. Assimétrica									
Armadura	nocossária	Arranjo								
Armadura	lecessaria	Ф (mm)	Esp. (cm)	As,tot (cm²/m						
As1 (cm²lm)	-	16	10,0	20,11						
As2 (cm²lm)	6,45	16	10,0	20,11						

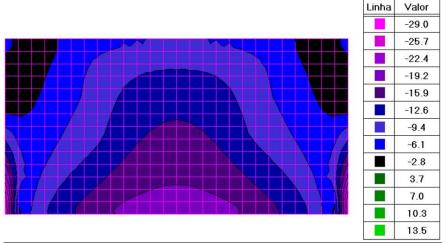
Resumo - ELU									
Zona	ξ	ω1	ω2						
Zona D	0,086	0,000	0,033						

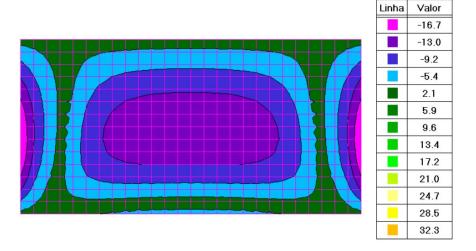
Verifica	Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO									
Materiais Esforços Seção										
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)			
500	40	10,7	21,2	40	5,3	16	10,0			
	Cálculo									
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)			
20,11	210.000	30.105	3,51	2,25	17,30	10,00	173,00			
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)			
6,98	0,011622077	0,323	11,21	116,48	0,01	0,03142446	0,12280051			

PAR8 – FORÇA E MOMENTO Y



3.3 PAR12

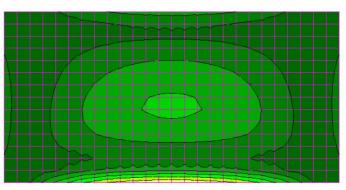



Linha

Valor

PAR12 - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)

PAR12 – ENVOLTÓRIA DE CARREGAMENTOS MAX – FORÇAS NA DIREÇÃO DE Y (tf.m/m)



PAR12 – ENVOLTÓRIA DE CARREGAMENTOS MAX – MOMENTO NA DIREÇÃO DE X (tf.m/m)

Linha	Valor
	-24.8
	-20.7
	-16.6
	-12.4
	-8.3
	-4.2
	4.1
	8.2
	12.4
	16.5
	20.6
	24.8
	28.9

PAR12 – ENVOLTÓRIA DE CARREGAMENTOS MAX – MOMENTO NA DIREÇÃO DE Y (tf.m/m)

	Lajes Maciças em Concreto Armado										
Mate	eriais	Esfo	rços	Seção			SEGURANÇA				
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξmáx.	As,mín (cm²/m)	γο	γs	γf	Classe Agres.
500	40	13,00	24,90	40	5,1	0,4	9,20	1,40	1,15	1,40	Classe IV

ELU - Flexão Composta - Arm. Assimétrica										
Armadura	nocossária	Arranjo								
Aimadura	lecessaria	Ф (mm)	Esp. (cm)	As,tot (cm²/m)						
As1 (cm²lm)	-	12,5	12,0	10,23						
As2 (cm²lm)	8,07	12,5	12,0	10,23						

Resumo - ELU							
Zona	ξ	ω1	ω2				
Zona D	0,103	0,000	0,041				

Verifica	ação Fissuras	- LAJES - FLEX	KÃO COMPOST	A - ARM. SIN	IPLES- CO	ONCRETO A	RMADO			
Materiais Esforços Seção										
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)			
500	40	13	24,9	40	5,125	12,5	12,0			
	Cálculo									
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)			
10,23	210.000	30.105	3,51	2,25	14,50	12,00	174,00			
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)			
6,98	0,007052785	0,243	8,49	266,23	0,01	0,12825415	0,344916487			

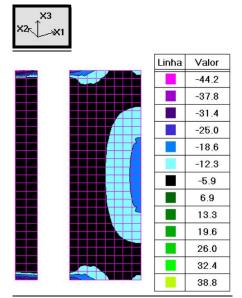
PAR12 – FORÇA E MOMENTO X

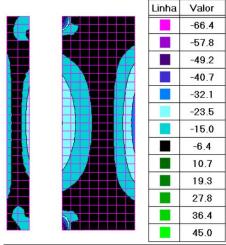
	Lajes Maciças em Concreto Armado										
Mate	eriais	Esfo	rços	Seção			SEGURANÇA				
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξmáx.	As,mín (cm²/m)	γc	γs	γf	Classe Agres.
500	40	20,60	19,20	40	5,5	0,4	9,20	1,40	1,15	1,40	Classe IV

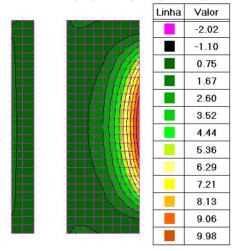
ELU - Flexão Composta - Arm. Assimétrica									
Armandura		Arranjo							
Armadura necessária		Ф (mm)	Esp. (cm)	As,tot (cm²/m					
As1 (cm²m)	ľ	20	10,0	31,42					
As2 (cm²m)	17,04	20	10,0	31,42					

Resumo - ELU							
Zona	ξ	ω1	ω2				
Zona D	0,151	0,000	0,088				

Verifica	Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO									
Mate	Materiais Esforços Seção									
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)			
500	40	20,6	19,2	40	5,5	20	10,0			
			Cálculo							
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)			
31,42	210.000	30.105	3,51	2,25	20,50	10,00	205,00			
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)			
6,98	0,015324842	0,336	11,58	181,83	-0,01	0,09571657	0,188414402			

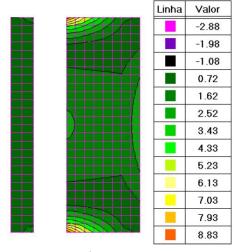

PAR12 – FORÇA E MOMENTO Y




3.4 TAMPA

TAMPA - ENVOLTÓRIA DE CARREGAMENTOS MAX - FORÇAS NA DIREÇÃO DE X (tf/m)

TAMPA – ENVOLTÓRIA DE CARREGAMENTOS MAX – FORÇAS NA DIREÇÃO DE Y (tf.m/m)



TAMPA - ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE X (tf.m/m)

TAMPA - ENVOLTÓRIA DE CARREGAMENTOS MAX - MOMENTO NA DIREÇÃO DE Y (tf.m/m)

	Lajes Maciças em Concreto Armado										
Mate	eriais	Esfo	rços		Seção			SE	GURAN	IÇA	
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξmáx.	As,mín (cm²/m)	γο	γs	γF	Classe Agres.
500	40	9,98	18,60	25	5,5	0,4	5,75	1,40	1,15	1,40	Classe IV

ELU	J - Flexão Co	mposta -	Arm. Assin	nétrica			
Armadura	nonnecária	Arranjo					
Armauura	lecessaria	Ф (mm)	Esp. (cm)	As,tot (cm²/m)			
As1 (cm²m)	1	20	10,0	31,42			
As2 (cm²lm)	14,58	20	10,0	31,42			

Resumo - ELU						
Zona	ξ	ω1	ω2			
Zona D	0,236	0,000	0,134			

Verifica	Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO						
Mate	eriais	Esfo	rços				
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)
500	40	9,98	18,6	25	5,5	20	10,0
	Cálculo						
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)
31,42	210.000	30.105	3,51	2,25	20,50	10,00	205,00
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)
6,98	0,015324842	0,423	8,25	155,20	0,00	0,06973947	0,160827333

TAMPA – FORÇA E MOMENTO X

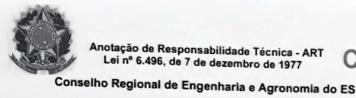
	Lajes Maciças em Concreto Armado										
Mate	eriais	Esfo	rços		Seção			SE	GURAN	NÇA	
Aço (fyk)	fck (Mpa)	Mk (tf.m/m)	Nk (tf/m)	h (cm)	d' (cm)	ξmáx.	As,mín (cm²/m)	γc	γs	γf	Classe Agres.
500	40	3,43	15,00	25	5,0	0,4	5,75	1,40	1,15	1,40	Classe I\

ELU - Flexão Composta - Arm. Assimétrica							
Armadura necessária			Arranjo				
		Ф (mm)	Esp. (cm)	As,tot (cm²/m)			
As1 (cm²lm)	1	10	10,0	7,85			
As2 (cm²m)	2,76	10	10,0	7,85			

Resumo - ELU					
Zona	ξ	ω1	ω2		
Zona D	0,085	0,000	0,025		

Verifica	Verificação Fissuras - LAJES - FLEXÃO COMPOSTA - ARM. SIMPLES- CONCRETO ARMADO						
Mate	eriais	Esfo	rços		9	Seção	
Aço (fyk)	fck (Mpa)	Mfr (tf.m/m)	Nfr (tf/m)	h (cm)	d' (cm)	Bitola ø	Esp. (cm)
500	40	3,43	15	25	5	10	10,0
	Cálculo						
As (cm²/m)	Es (Mpa)	Ecs (Mpa)	fctm (Mpa)	η1	hi (cm)	bi (cm)	Acri (cm²)
7,85	210.000	30.105	3,51	2,25	12,50	10,00	125,00
αs	ρri	ξ	x (cm)	σsi (Mpa)	Erro	Wk1 (mm)	Wk2 (mm)
6,98	0,006283185	0,305	6,11	131,85	0,00	0,02516398	0,152158393

TAMPA – FORÇA E MOMENTO Y


Mutortyphullure savenno.

CARLOS RAPHAEL MONTEIRO DE LEMOS

CREA-ES 011840/D

ART

Anotação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977

CREA-ES

ART de Obra ou Serviço 0820180124699

ART Individual

1. Responsável Técnico

CARLOS RAPHAEL MONTEIRO DE LEMOS

Título profissional: ENGENHEIRO CIVIL

Empresa contratada: ML PROJETOS EIRELI ME

RNP: 0800128168 Registro: ES-011840/D

Registro: 14177

Nº:

2. Dados do Contrato

Contratante: COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ

Rua: AVENIDA AVENIDA LAURO VIEIRA CHAVES

Complemento:

Cidade: FORTALEZA Telefone: 8531011769

Contrato: 74/2017

Valor do Contrato/Honorários: R\$1.000,00

UF: CE

CEP: 60422700 Bairro: AEROPORTO

CPF/CNPJ: 07040108000157

Nº do Aditivo:

Dimensão/Quantidade: 78098

Tipo de contratante: PESSOA JURÍDICA

3. Dados da Obra/Serviço

Rua: AVENIDA AVENIDA LAURO VIEIRA CHAVES

Complemento:

Cidade: FORTALEZA Data de início: 27/06/2017

Bairro: AEROPORTO

UF: CF

Prev. Término: 26/12/2019 Proprietário: COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ

No. Quadra

Lote CEP: 60422700 Coord. Geogr.:

CPF/CNPJ:07040108000157

Unidade de medida: M2

4. Atividade Técnica

Qtde de Pavimento(s): 0

Nº Pavimento(s): 0

ATIVIDADE(S) TÉCNICA(S): 35 - 5.1 - ELABORAÇÃO DE PROJETO

PARTICIPAÇÃO:

NATUREZA: 103 - AUTORIA NÍVEL: 104 - EXECUÇÃO

NATUREZA DO(S) SERVIÇO(S): 1105 - SISTEMA DE ABASTECIMENTO DE ÁGUA E/OU ESGOTO SANITÁRIO, 1203 - TRATAMENTO D ÁGUA, 1204 - TRATAMENTO DE ESGOTO E RESÍDUOS, 9111 - SERVIÇOS AFINS E CORRELATOS (ESPECIFICAR NO CAMPO 22)

TIPO DA OBRA/SERVIÇO: 202 - FUNDAÇÕES,222 - ESTRUTURAS DE CONCRETO,406 - ESTAÇÕES DE TRATAMENTO DE ESGOTO,407 - ESTAÇÕES DE TRATAMENTO

PROJETO(S)/SERVIÇO(S): 2 - PROJETO ESTRUTURAL,7 - PROJETO DE FUNDAÇÕES

Após a conclusão das atividades técnicas, o profissional deverá proceder a baixa desta ART.

5. Observações

CONFORME CONTRATO Nº74/2017

6. Declarações

Acessibilidade: <declara a aplicabilidade das regras de acessibilidade previstas nas normas técnicas da ABNT, na legislação específica e no Decreto nº5.296, de 2 de dezembro de 2004, às atividades profissionais acima relacionadas.>

7. Entidade de classe

NENHUMA ENTIDADE

8.Assinaturas

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ - CPF/CNPJ: 07040108000157

CARLOS RAPHAEL MONTEIRO DE LEMOS - CPF: 04

9. Informações

- A ART é válida somente quando quitada, podendo sua conferência ser realizada no site do CREA.
- A autenticidade deste documento pode ser verificada no site www.creaes.org.br ou www.confea.org.br
- A guarda da via assinada da ART será de responsabilidade do profissional e do contratante com o objetivo de documentar o vinculo contratual.

www.creaes.org.br tel: (27)3134-0046

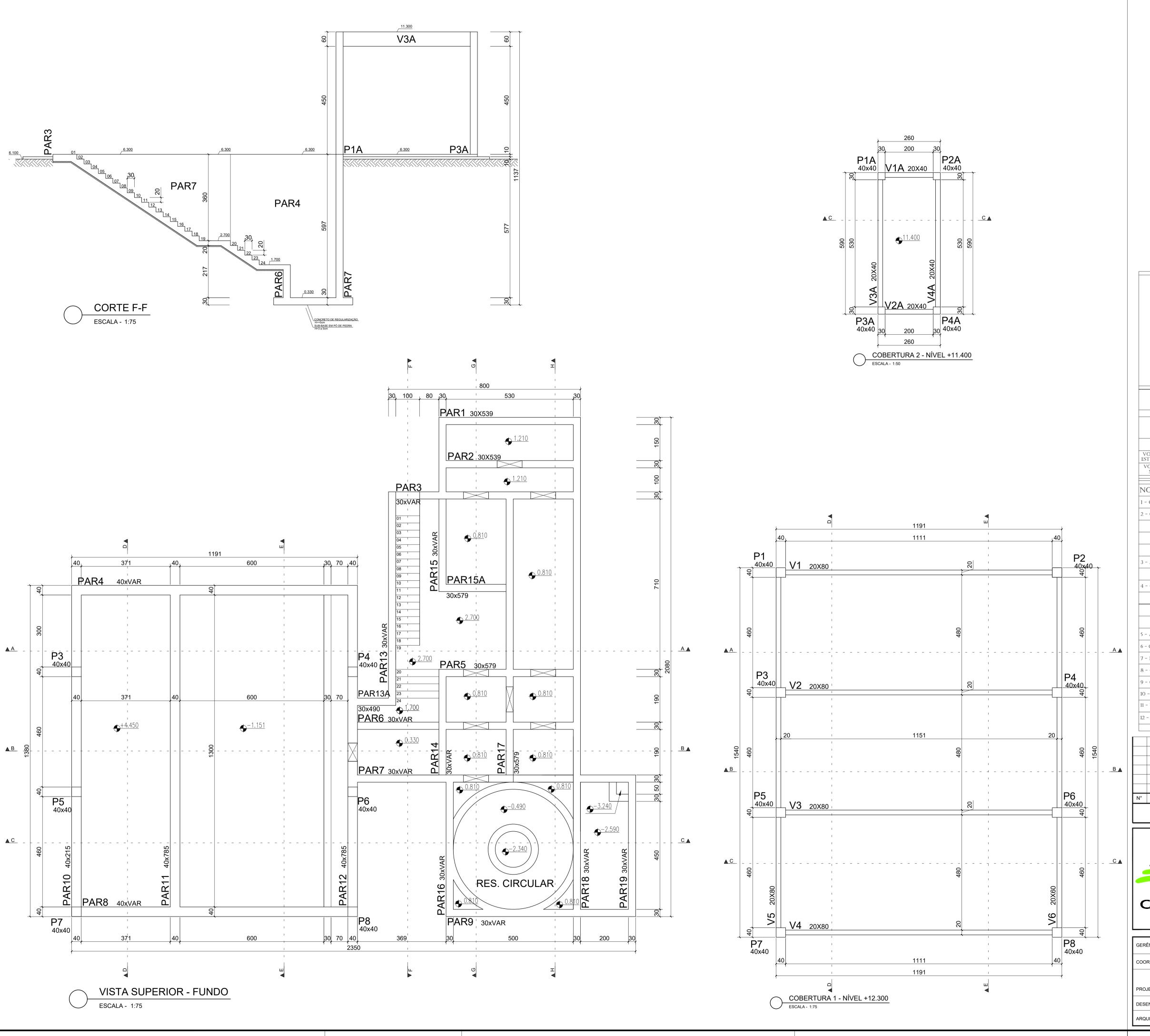
creaes@creaes.org.br art@creaes.org.br

Valor ART: R\$ 82,94

Registrada em: 14/11/2018 Data de pagamento: 22/11/2018

Valor Pago: R\$ 82,94

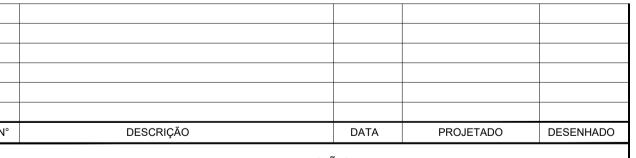
Nosso Número: 14000000002555366


Peças Gráficas

PEÇAS GRÁFICAS

Relação de Plantas:

DESENHO:	PRANCHA:	TÍTULO:
01	01/10	Projeto Estrutural – EEE-PF2 – Formas e Cortes
01	02/10	Projeto Estrutural – EEE-PF2 – Formas e Cortes
01	03/10	Projeto Estrutural – EEE-PF2 – Formas e Cortes
01	04/10	Projeto Estrutural – EEE-PF2 – Formas e Cortes
01	05/10	Projeto Estrutural – EEE-PF2 – Armação
01	06/10	Projeto Estrutural – EEE-PF2 – Armação
01	07/10	Projeto Estrutural – EEE-PF2 – Armação
01	08/10	Projeto Estrutural – EEE-PF2 – Armação
01	09/10	Projeto Estrutural – EEE-PF2 – Armação
01	10/10	Projeto Estrutural – EEE-PF2 – Armação



QUANTITATIVOS

		ELEMENTOS ESTRUTURAIS						
	TAMPA	PAREDES	SAPATAS	VIGAS	PILAR	FUNDO	CAIXAS	TOTAL
ÁREA DE FORMAS (M2)	98.00	1208.00	8.00	135.00	51.00	XXX	XXX	1500.00
VOLUME DE CONCRETO ESTRUTURAL 40MPA(M3)	24.50	401.50	2.00	12.50	6.00	145.00	XXX	591.50
VOLUME DE CONCRETO SIMPLES 15MPA(M3)	XXX	XXX	XXX	XXX	XXX	18.20	XXX	18.20

NOTAS:	
1 – COTAS E DIMENSÕES EM CM.	LAJES: 5.0CM SAPATAS: 5.0CM
2 - CONCRETO : FCK = 40MPA	PILARES: 5.0CM VIGAS: 5.0CM
MÓDULO DE ELASTICIDADE : ECS = 30GPA	BLOCOS: 5.0CM TUBULÃO: 5.0CM
FATOR ÁGUA CIMENTO : A/C <=0.45	RADIER: 5.0CM
CONSUMO DE CIMENTO : 350KGF/M3	13 - NORMA DE FÔRMAS E ESCORAMENTOS :NBR 15696/2009
3 - ACOS : CA-50 - FYK = 500 MPA	FÓRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO
CA-60 - FYK = 600 MPA	PROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS
4 - CONCRETO DE REGULARIZAÇÃO:	14 - NORMA DE CARGAS : NBR 6120/1980
MÓDULO DE ELASTICIDADE : ECS = 18.5GPA	CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES
ESPESSURA : 5.0CM	15 - NORMA DE CÁLCULO : NBR 6118/2014
CONSUMO DE CIMENTO : 250KGF/M3	PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO
5 – AS COTAS PREVALECEM SOBRE O DESENHO	16 - NORMA DE FUNDAÇÕES : NBR 6122/2010
6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = IV	PROJETO E EXECUÇÃO DE FUNDAÇÕES
7 - FATOR DO TERRENO:SI = 1.0	17 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012
8 - CATEGORIA DE RUGOSIDADE:S2 = I	PROJETO DE ESTRUTURAS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO
9 - CLASSE DA EDIFICAÇÃO:S2 = C	18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004
10 - FATOR ESTATÍSTICO:S3 = 1.00	EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO
11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S	19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS
12 - COBRIMENTO DAS ARMADURAS :	TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBRA

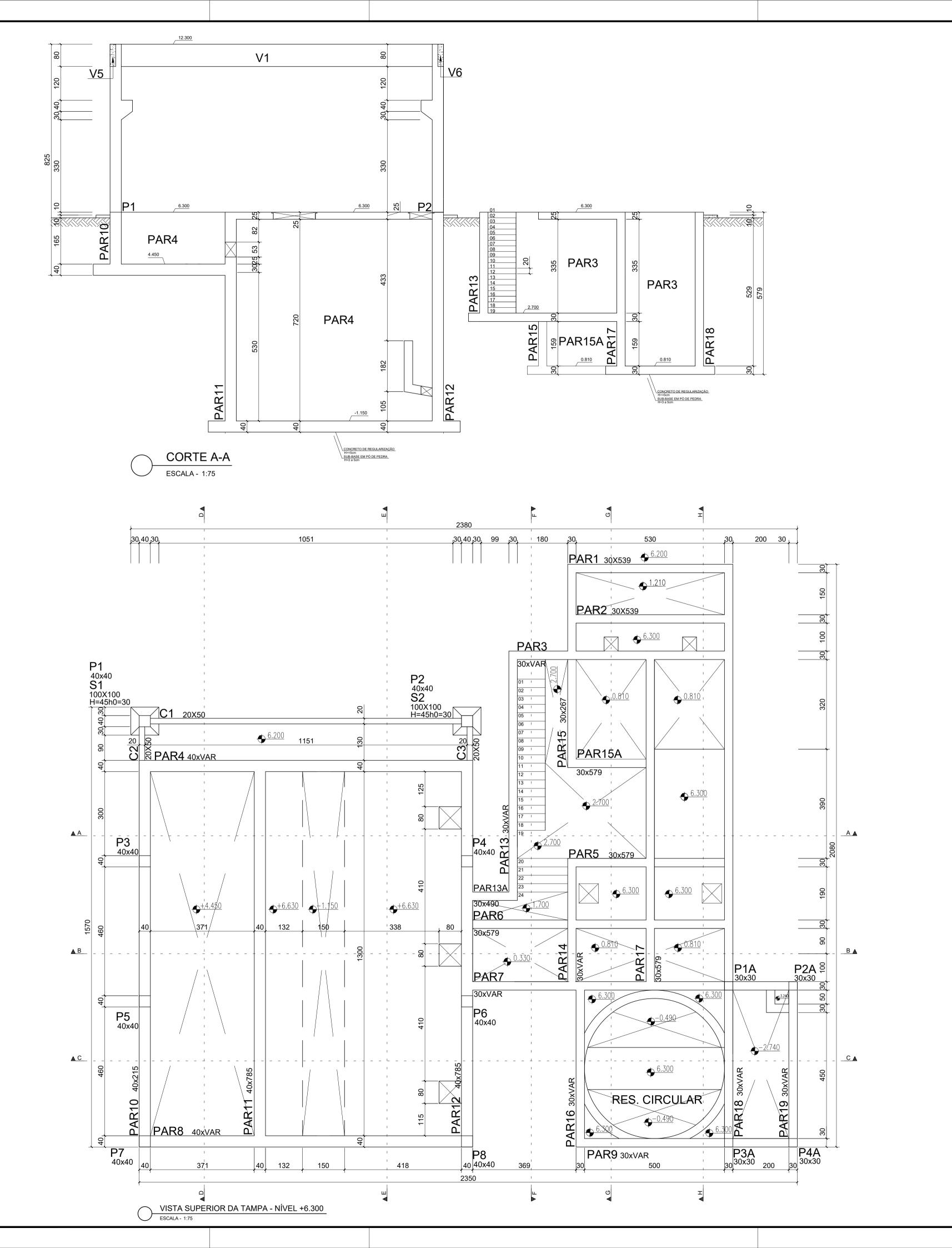
REVISÃO

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA

DIRETORIA DE ENGENHARIA

01 01/10

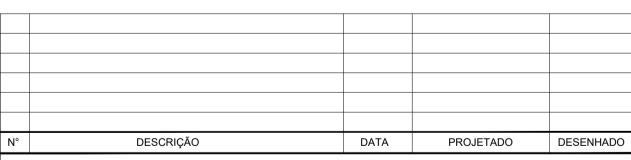
DESENHO PRANCHA Nº


PROJETO EXECUTIVO

PROJETO ESTRUTURAL

EEE-PF2

FORMAS E CORTES


GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA				
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIROZ				
	two explicit then well have				
PROJETO:	ENGº CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 01	1840/D			
DESENHO:	EQUIPE ML	ESCALA:	INDICADA		
ARQUIVO:	0658ST-001-EST-R00.DWG	DATA:	JUNHO/2019		

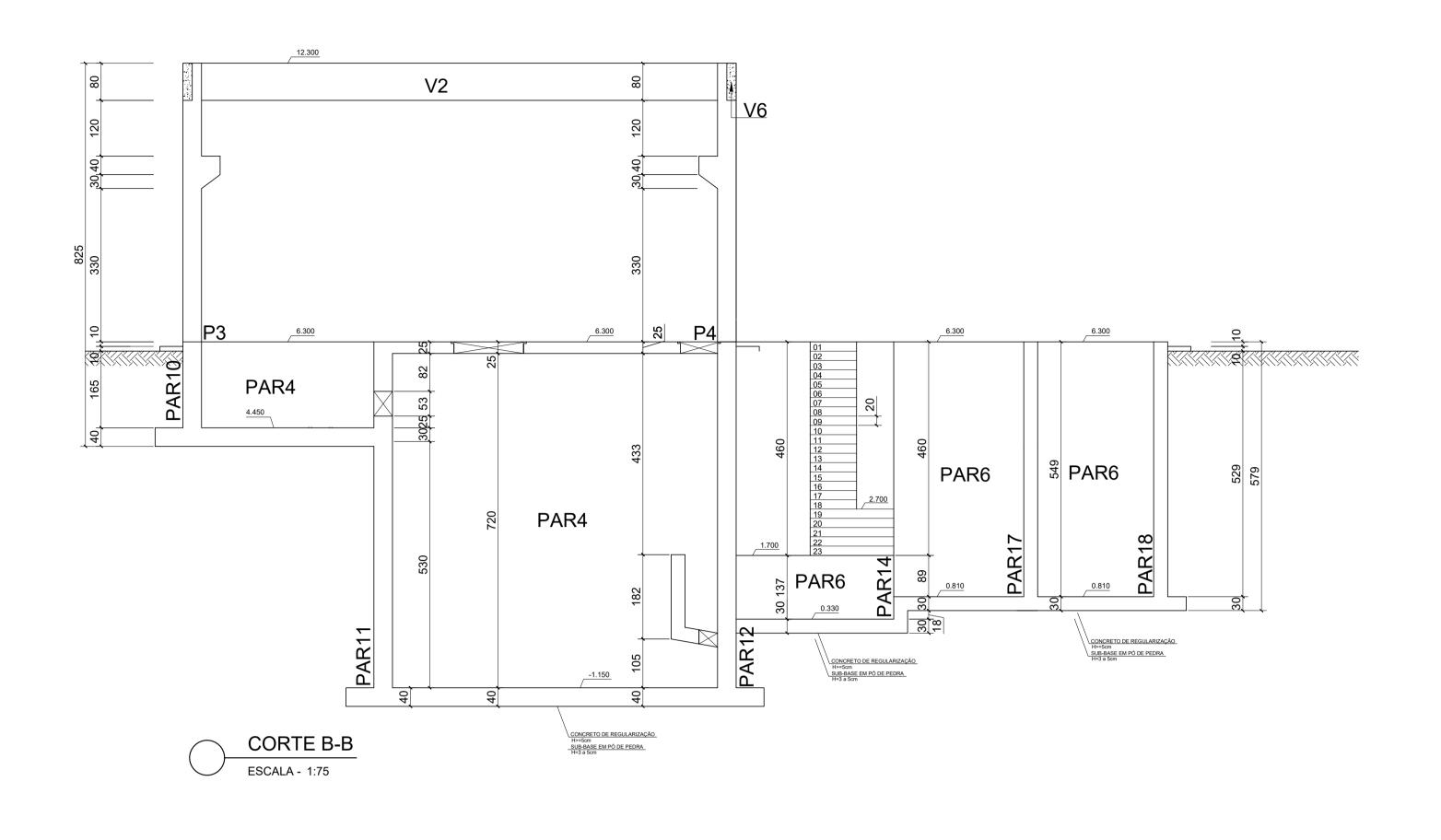
LAJES: 5.0CM

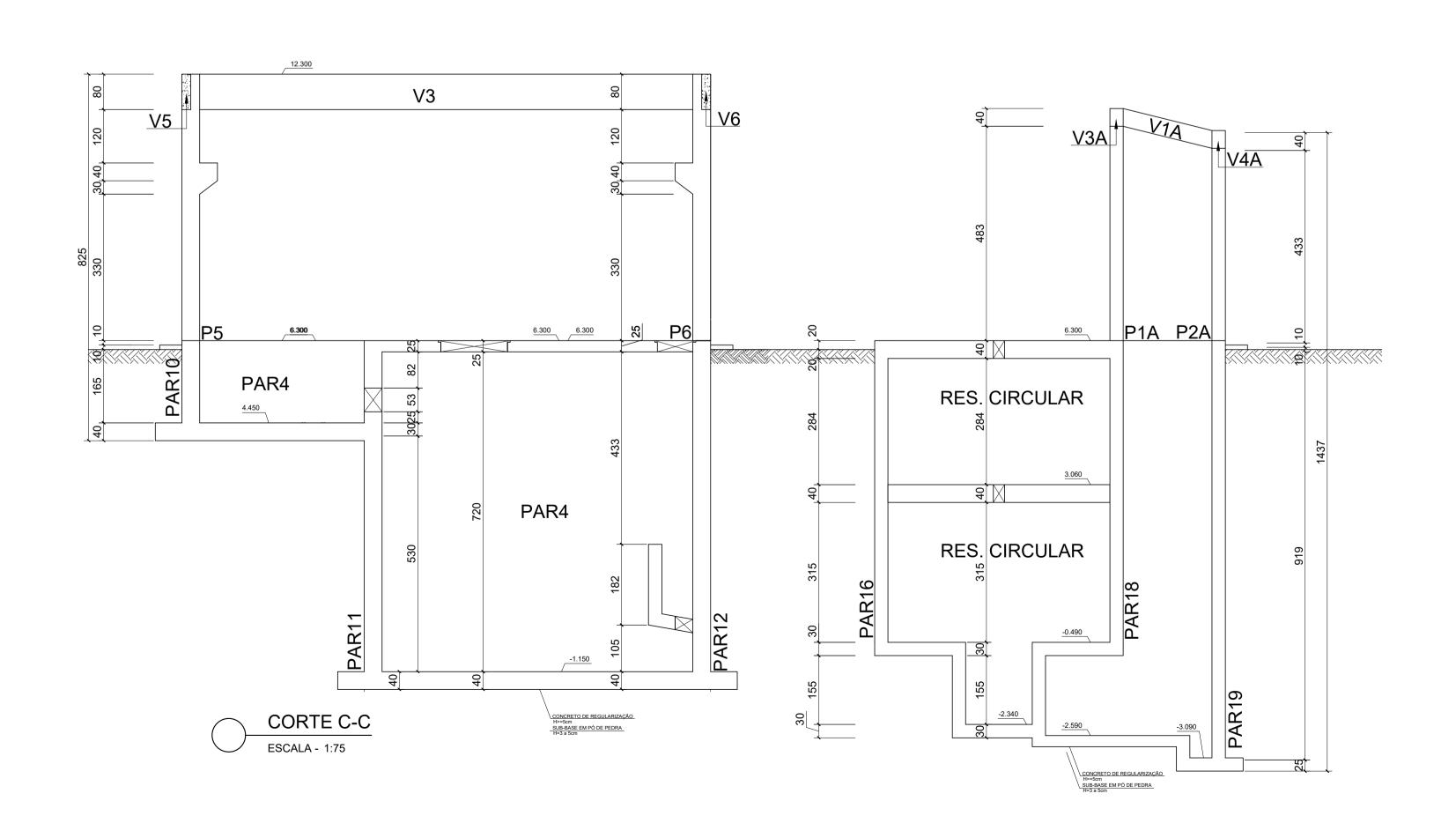
NOTAS: SAPATAS: 5.0CM 1 - COTAS E DIMENSÕES EM CM. VIGAS: 5.0CM PILARES: 5.0CM 2 - CONCRETO : FCK = 40MPA TUBULÃO: 5.0CM BLOCOS: 5.0CM MÓDULO DE ELASTICIDADE : ECS = 30GPA FATOR ÁGUA CIMENTO : A/C <=0.45 RADIER: 5.0CM 13 - NORMA DE FÔRMAS E ESCORAMENTOS :NBR 15696/2009 CONSUMO DE CIMENTO: 350KGF/M3 3 - AÇOS : CA-50 - FYK = 500 MPA FÔRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO CA-60 - FYK = 600 MPAPROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS 14 - NORMA DE CARGAS : NBR 6120/1980 4 - CONCRETO DE REGULARIZAÇÃO: MÓDULO DE ELASTICIDADE : ECS = 18.5GPA CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES ESPESSURA: 5.0CM 15 - NORMA DE CÁLCULO : NBR 6118/2014 CONSUMO DE CIMENTO : 250KGF/M3 PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO 5 - AS COTAS PREVALECEM SOBRE O DESENHO 16 - NORMA DE FUNDAÇÕES : NBR 6122/2010 PROJETO E EXECUÇÃO DE FUNDAÇÕES 6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = IV 7 - FATOR DO TERRENO:S1 = 1.017 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012 8 - CATEGORIA DE RUGOSIDADE:S2 = I PROJETO DE ESTRUTURAS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO 9 - CLASSE DA EDIFICAÇÃO:S2 = C 18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004 10 - FATOR ESTATÍSTICO:S3 = 1.00 EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO 11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S 19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS 12 - COBRIMENTO DAS ARMADURAS : TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBRA

REVISÃO

Cagece

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA


02/10


DESENHO PRANCHA Nº

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA - CE

PROJETO EXECUTIVO PROJETO ESTRUTURAL EEE-PF2 FORMAS E CORTES

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA				
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIROZ				
PROJETO:	ENG° CARLOS CREA/ES: 01°	1840/D			
DESENHO:	EQUIPE ML	ESCALA:	INDICADA		
ARQUIVO:	0658ST-002-EST-R00.DWG	DATA:	JUNHO/2019		

NOTAS :	
1 – COTAS E DIMENSÕES EM CM.	LAJES: 5.0CM SAPATAS: 5.0CM
2 - CONCRETO : FCK = 40MPA	PILARES: 5.0CM VIGAS: 5.0CM
MÓDULO DE ELASTICIDADE : ECS = 30GPA	BLOCOS: 5.0CM TUBULÃO: 5.0CM
FATOR ÁGUA CIMENTO : A/C <=0.45	RADIER: 5.0CM
CONSUMO DE CIMENTO : 350KGF/M3	13 - NORMA DE FÓRMAS E ESCORAMENTOS :NBR 15696/2009
3 - ACOS : CA-50 - FYK = 500 MPA	FÔRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO
CA-60 - FYK = 600 MPA	PROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS
4 - CONCRETO DE REGULARIZAÇÃO:	14 - NORMA DE CARGAS : NBR 6120/1980
MÓDULO DE ELASTICIDADE : ECS = 18.5GPA	CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES
ESPESSURA : 5.0CM	15 - NORMA DE CÁLCULO : NBR 6118/2014
CONSUMO DE CIMENTO : 250KGF/M3	PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO
5 - AS COTAS PREVALECEM SOBRE O DESENHO	16 - NORMA DE FUNDAÇÕES : NBR 6122/2010
6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = IV	PROJETO E EXECUÇÃO DE FUNDAÇÕES
7 - FATOR DO TERRENO:S1 = 1.0	17 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012
8 - CATEGORIA DE RUGOSIDADE:S2 = I	PROJETO DE ESTRUTURAS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO
9 - CLASSE DA EDIFICAÇÃO:S2 = C	18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004
10 - FATOR ESTATÍSTICO:S3 = 1.00	EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO
11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S	19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS
12 - COBRIMENTO DAS ARMADURAS :	TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBRA

N°	DESCRIÇÃO	DATA	PROJETADO	DESENHADO	

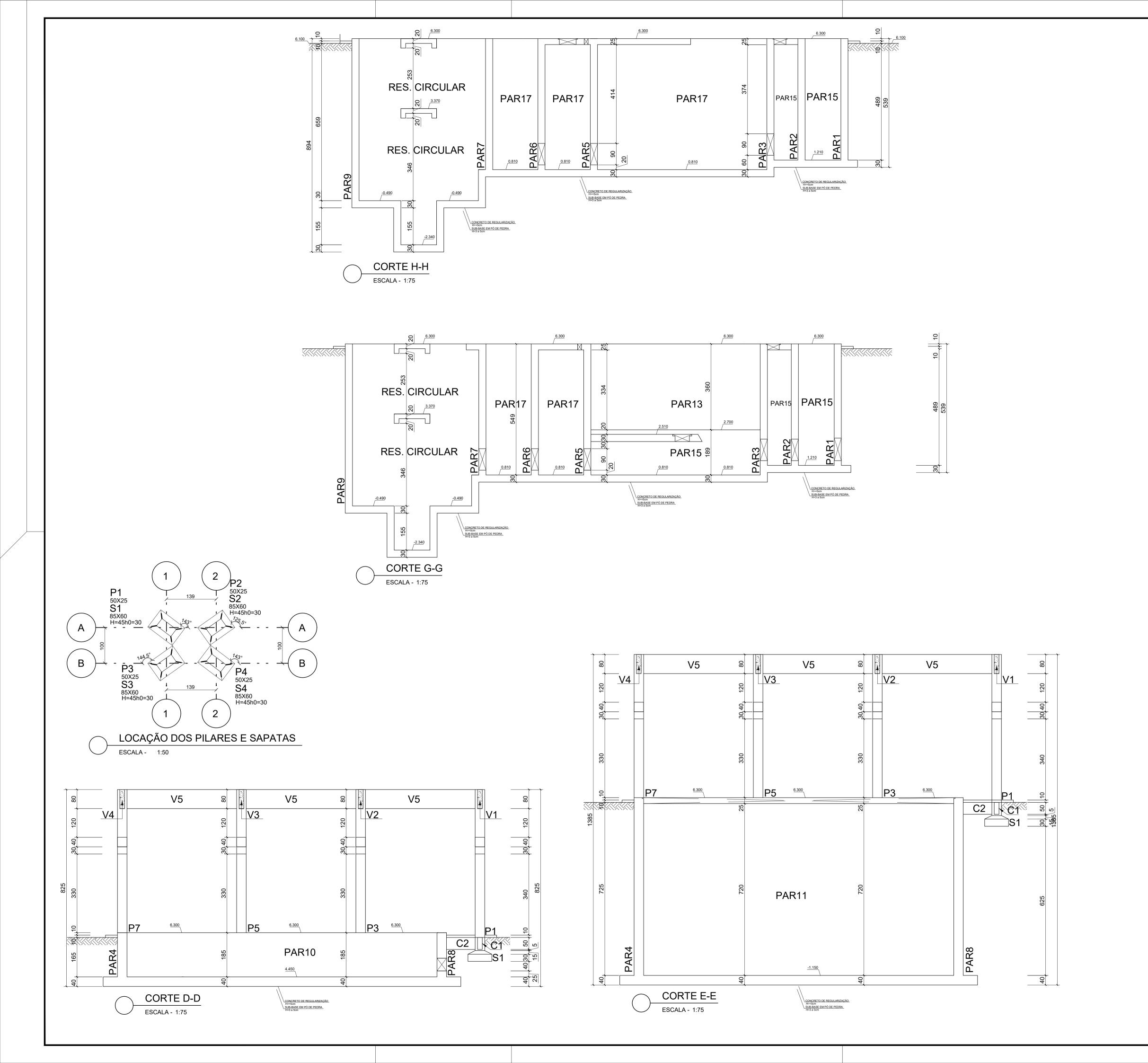
REVISÃO

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA - CE

DESENHO PRANCHA Nº

03/10


PROJETO EXECUTIVO

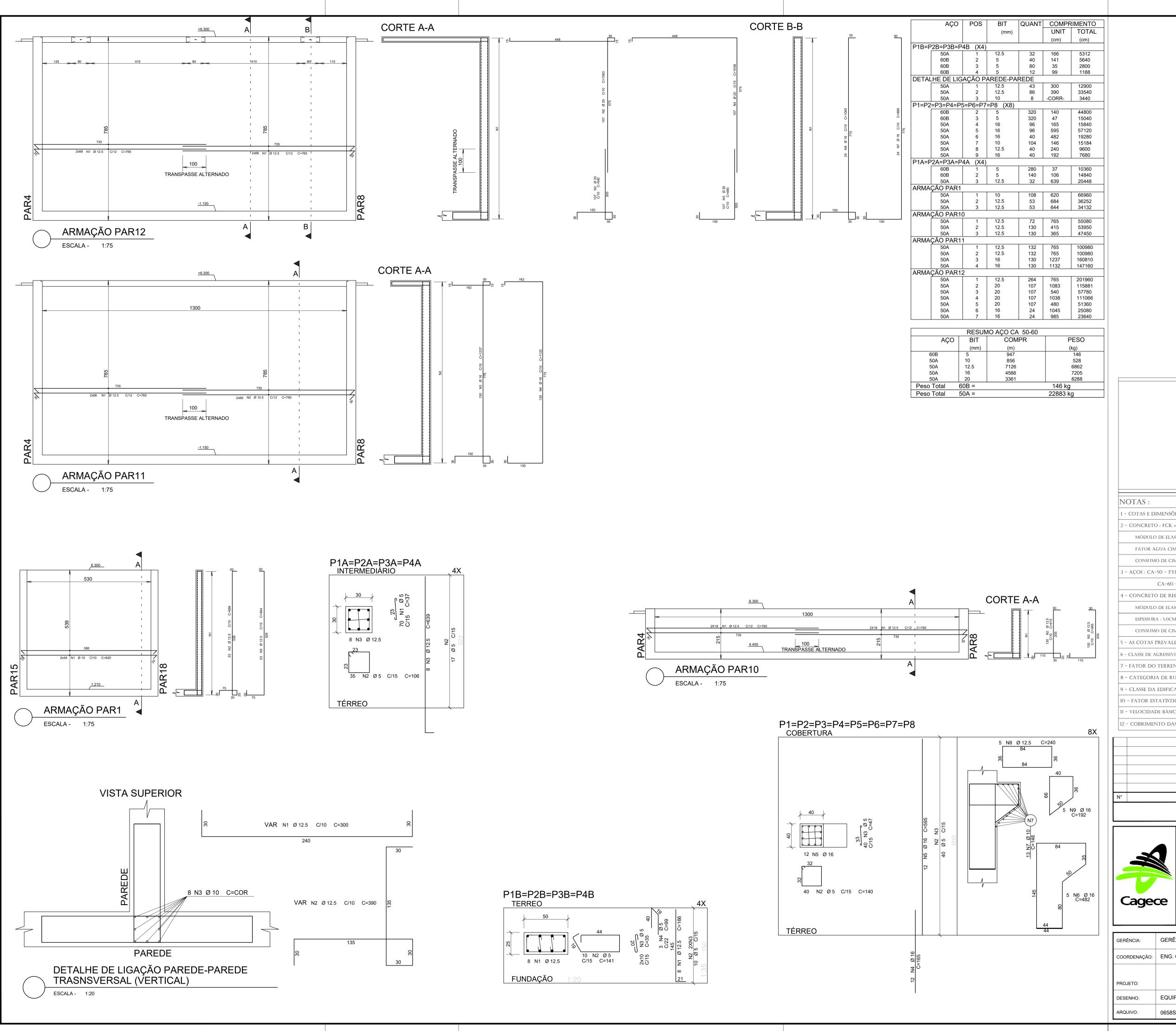
PROJETO ESTRUTURAL

EEE-PF2

	FORMAS E CORTES	
NCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA	

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA				
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIROZ				
PROJETO:	ENG° CARLOS CREA/ES: 011840/D				
DESENHO:	EQUIPE ML		INDICADA		
ARQUIVO:	0658ST-003-EST-R00.DWG	DATA:	JUNHO/2019		

NOTAS: LAJES: 5.OCM SAPATAS: 5.0CM 1 - COTAS E DIMENSÕES EM CM. VIGAS: 5.0CM 2 - CONCRETO : FCK = 40MPA PILARES: 5.0CM BLOCOS: 5.0CM TUBULÃO: 5.0CM MÓDULO DE ELASTICIDADE : ECS = 30GPA FATOR ÁGUA CIMENTO : A/C <= 0.45 RADIER: 5.0CM CONSUMO DE CIMENTO: 350KGF/M3 13 - NORMA DE FÔRMAS E ESCORAMENTOS :NBR 15696/2009 3 - AÇOS : CA-50 - FYK = 500 MPA FÔRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO PROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS CA-60 - FYK = 600 MPA14 - NORMA DE CARGAS : NBR 6120/1980 4 - CONCRETO DE REGULARIZAÇÃO: MÓDULO DE ELASTICIDADE : ECS = 18.5GPA CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES 15 - NORMA DE CÁLCULO : NBR 6118/2014 ESPESSURA: 5.0CM CONSUMO DE CIMENTO: 250KGF/M3 PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO 5 - AS COTAS PREVALECEM SOBRE O DESENHO 16 - NORMA DE FUNDAÇÕES : NBR 6122/2010 PROJETO E EXECUÇÃO DE FUNDAÇÕES 6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = IV 7 - FATOR DO TERRENO:S1 = 1.0 17 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012 8 - CATEGORIA DE RUGOSIDADE:S2 = I PROJETO DE ESTRUTURAS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO 9 - CLASSE DA EDIFICAÇÃO:S2 = C 18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004 10 - FATOR ESTATÍSTICO:S3 = 1.00 EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO 11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S 19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS 12 - COBRIMENTO DAS ARMADURAS : TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBRA


COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DESENHO PRANCHA Nº DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA

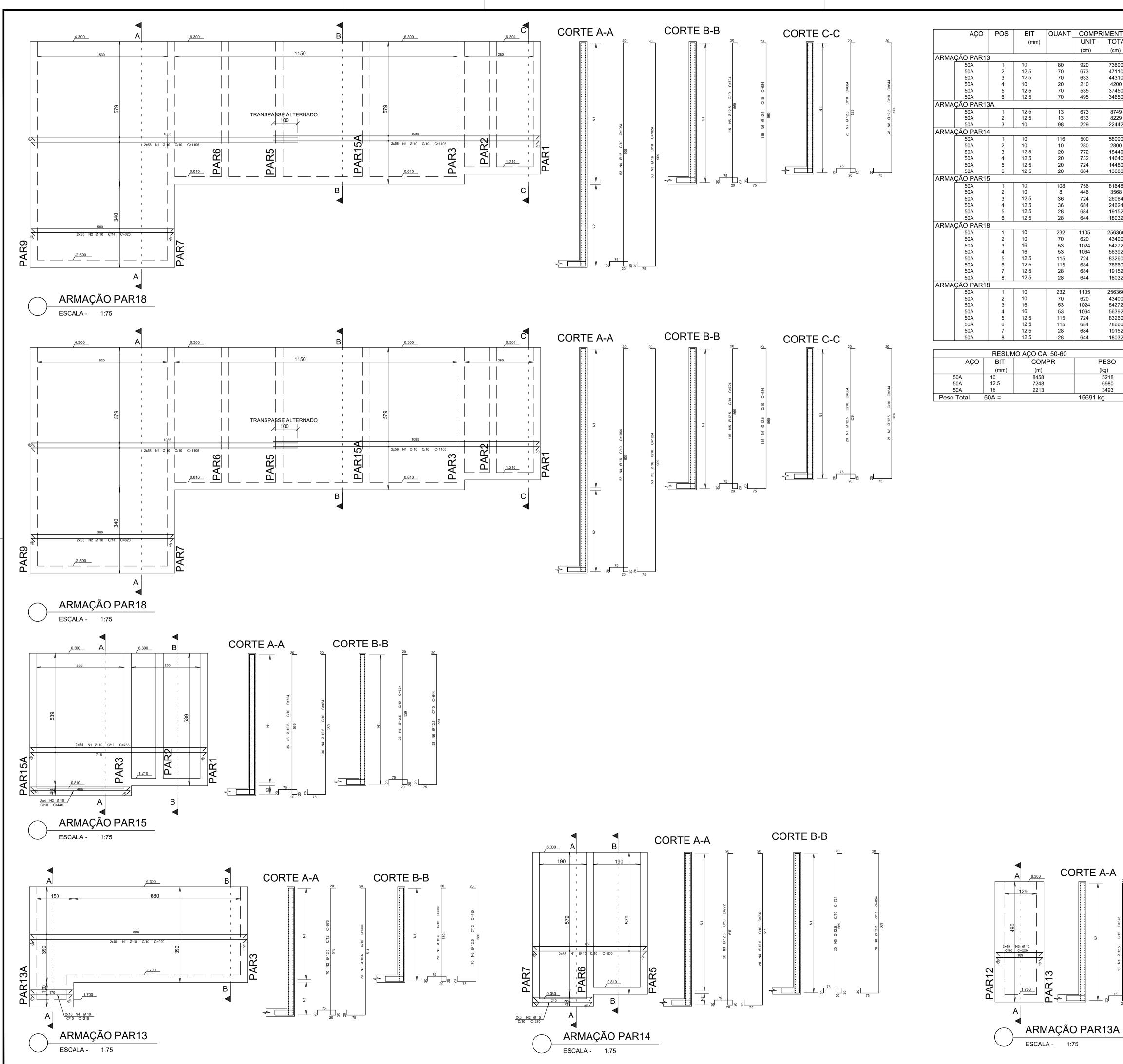
SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA - CE

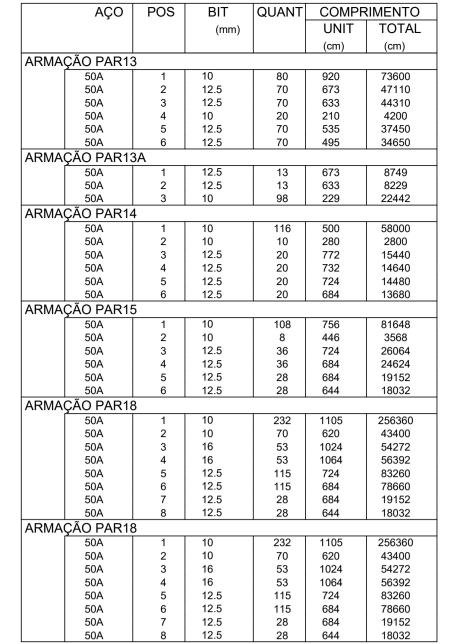
04/10

PROJETO EXECUTIVO PROJETO ESTRUTURAL EEE-PF2 FORMAS E CORTES

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA				
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIROZ				
PROJETO:	ENG° CARLOS CREA/ES: 01°	1840/D			
DESENHO:	EQUIPE ML	ESCALA:	INDICADA		
ARQUIVO:	0658ST-004-EST-R00.DWG	DATA:	JUNHO/2019		

NOTAS :	
1 – COTAS E DIMENSÕES EM CM.	LAJES: 5.0CM SAPATAS: 5.0CM
2 - CONCRETO : FCK = 40MPA	PILARES: 5.0CM VIGAS: 5.0CM
MÓDULO DE ELASTICIDADE : ECS = 30GPA	BLOCOS: 5.0CM TUBULÃO: 5.0CM
fator água cimento : a/c <=0.45	RADIER: 5.0CM
CONSUMO DE CIMENTO : 350KGF/M3	13 - NORMA DE FÓRMAS E ESCORAMENTOS :NBR 15696/2009
3 - ACOS : CA-50 - FYK = 500 MPA	FÔRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO
CA-60 - FYK = 600 MPA	PROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS
4 - CONCRETO DE REGULARIZAÇÃO:	14 - NORMA DE CARGAS : NBR 6120/1980
MÓDULO DE ELASTICIDADE : ECS = 18.5GPA	CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES
ESPESSURA : 5.0CM	15 - NORMA DE CÁLCULO : NBR 6118/2014
CONSUMO DE CIMENTO : 250KGF/M3	PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO
5 – AS COTAS PREVALECEM SOBRE O DESENHO	16 - NORMA DE FUNDAÇÕES : NBR 6122/2010
6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = IV	PROJETO E EXECUÇÃO DE FUNDAÇÕES
7 - FATOR DO TERRENO:SI = 1.0	17 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012
8 - CATEGORIA DE RUGOSIDADE:S2 = I	PROJETO DE ESTRUTURAS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO
9 - Classe da edificação:s2 = C	18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004
10 - FATOR ESTATÍSTICO:S3 = 1.00	EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO
11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S	19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS
12 - COBRIMENTO DAS ARMADURAS :	TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBRA


COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA


05/10 SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA - CE

DESENHO PRANCHA Nº

PROJETO EXECUTIVO PROJETO ESTRUTURAL EEE-PF2 ARMAÇÃO

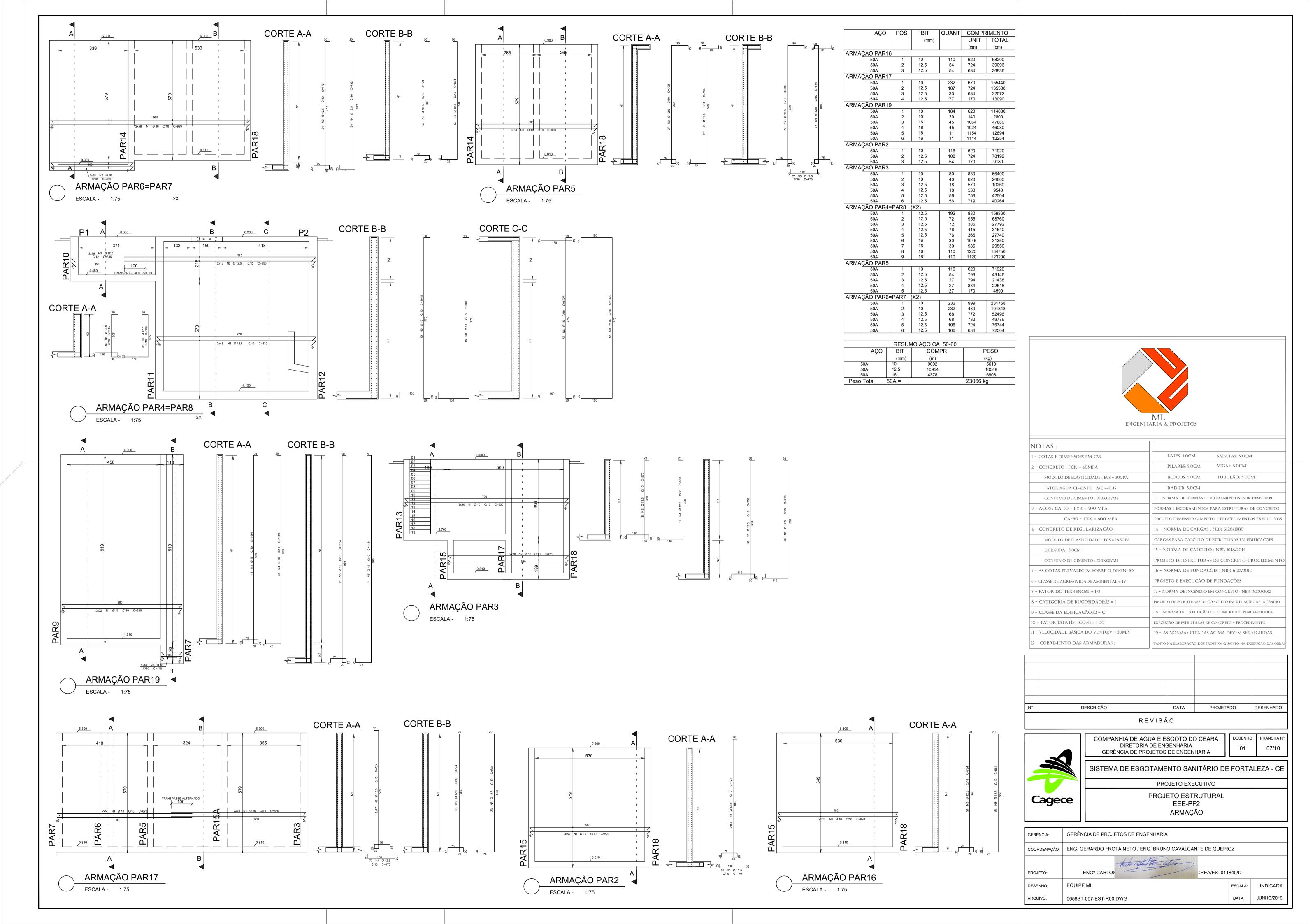
GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA				
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIROZ				
PROJETO:	ENG° CARLOS CREA/ES: 01°	1840/D			
DESENHO:	EQUIPE ML	ESCALA:	INDICADA		
ARQUIVO:	0658ST-005-EST-R00.DWG	DATA:	JUNHO/2019		

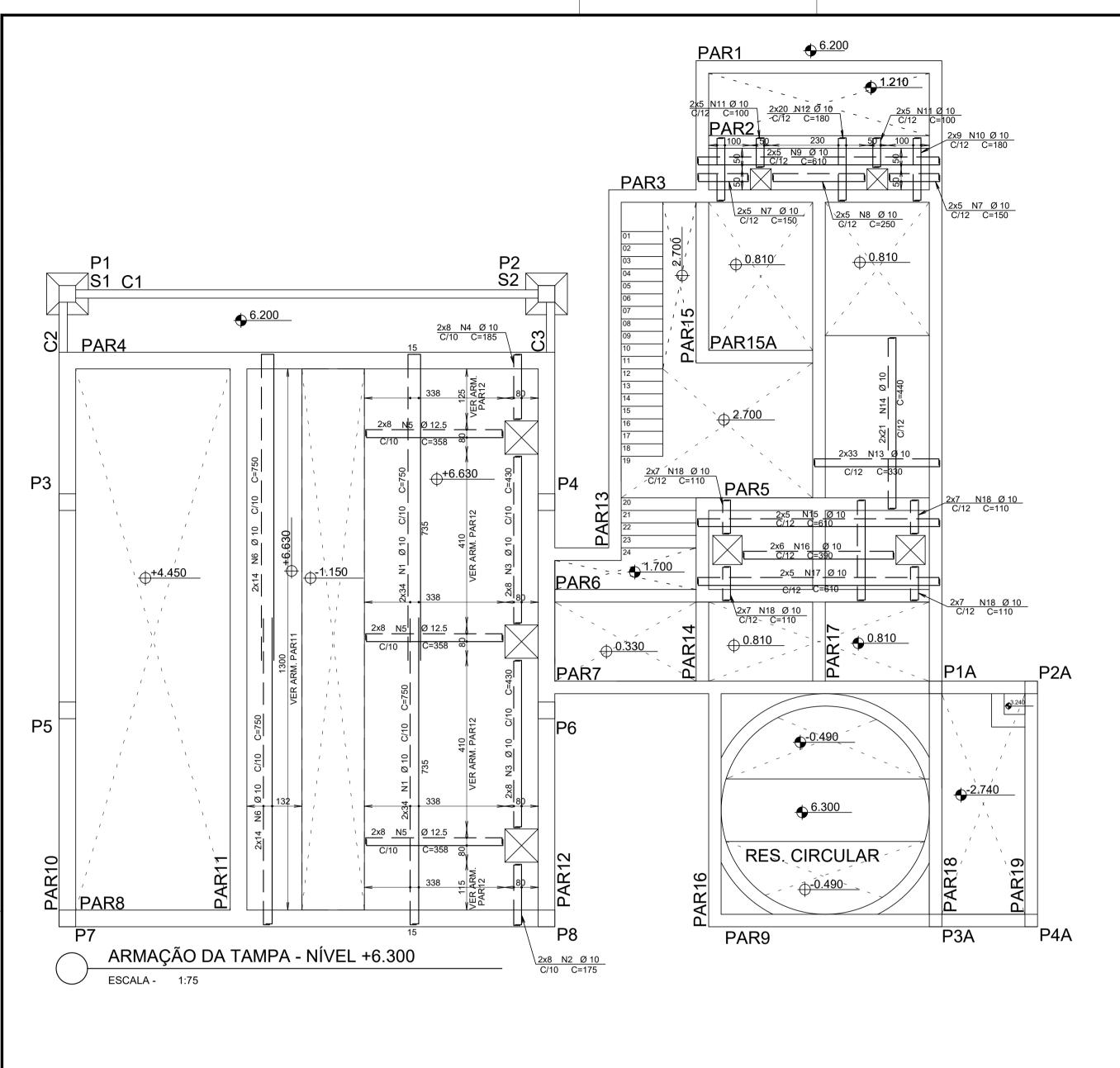
	50A	8	12.5	28	644	18032	
RESUMO AÇO CA 50-60							
	AÇO	BIT	СОМ	PR	Р	ESO	
		(mm)	(m)		(kg)	
50A 10		10	8458			5218	
50A 12.5		7248			6980		
5	50A	16	2213			3493	
Peso Total 50A =			•		15691 k	g	

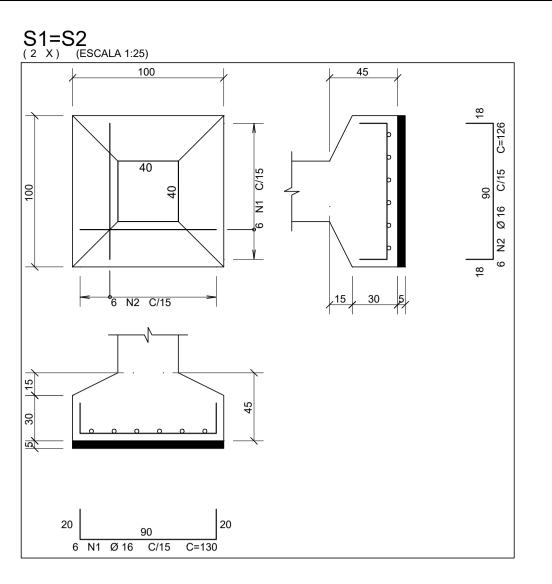
NOTAS:	
1 – COTAS E DIMENSÕES EM CM.	LAJES: 5.0CM SAPATAS: 5.0CM
2 - CONCRETO : FCK = 40MPA	PILARES: 5.0CM VIGAS: 5.0CM
MÓDULO DE ELASTICIDADE : ECS = 30GPA	BLOCOS: 5.0CM TUBULÃO: 5.0CM
FATOR ÁGUA CIMENTO : A/C <=0.45	RADIER: 5.0CM
CONSUMO DE CIMENTO : 350KGF/M3	13 - NORMA DE FÔRMAS E ESCORAMENTOS :NBR 15696/2009
3 - ACOS : CA-50 - FYK = 500 MPA	FÓRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO
CA-60 - FYK = 600 MPA	PROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS
4 - CONCRETO DE REGULARIZAÇÃO:	14 - NORMA DE CARGAS : NBR 6120/1980
MÓDULO DE ELASTICIDADE : ECS = 18.5GPA	CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES
ESPESSURA : 5.0CM	15 - NORMA DE CÁLCULO : NBR 6118/2014
CONSUMO DE CIMENTO : 250KGF/M3	PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO
5 - AS COTAS PREVALECEM SOBRE O DESENHO	16 - NORMA DE FUNDAÇÕES : NBR 6122/2010
6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = IV	PROJETO E EXECUÇÃO DE FUNDAÇÕES
7 - FATOR DO TERRENO:SI = 1.0	17 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012
8 - CATEGORIA DE RUGOSIDADE:S2 = I	PROJETO DE ESTRUTURAS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO
9 - CLASSE DA EDIFICAÇÃO:S2 = C	18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004
10 - FATOR ESTATÍSTICO:S3 = 1.00	EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO
11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S	19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS
12 - COBRIMENTO DAS ARMADURAS :	TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBRAS

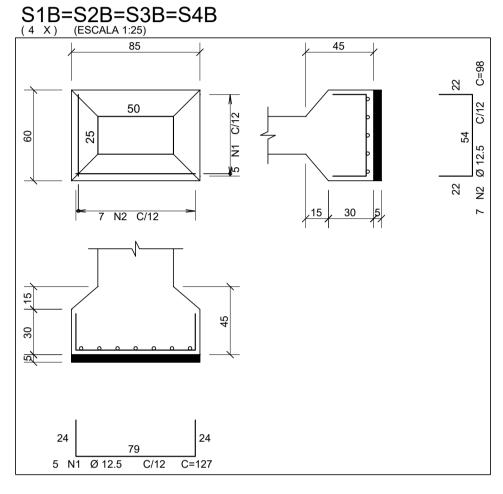
N°	DESCRIÇÃO	DATA	PROJETADO	DESENHADO
REVISÃO				

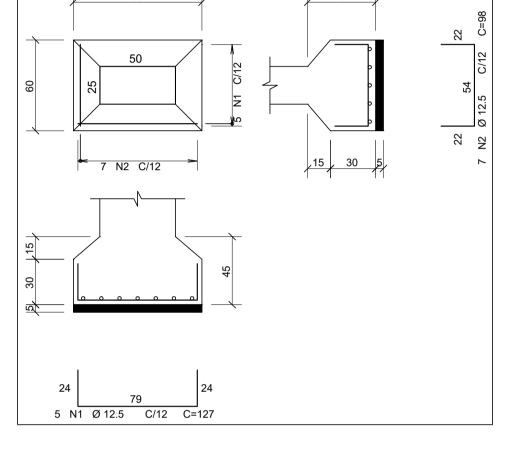
COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA

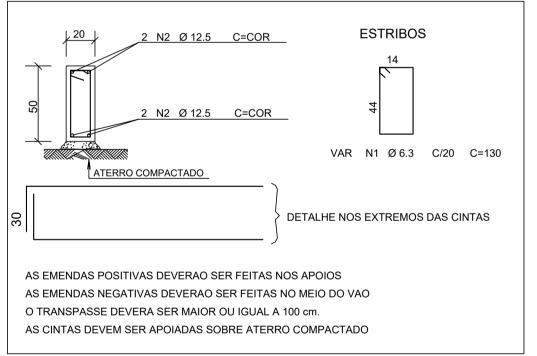

SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA - CE

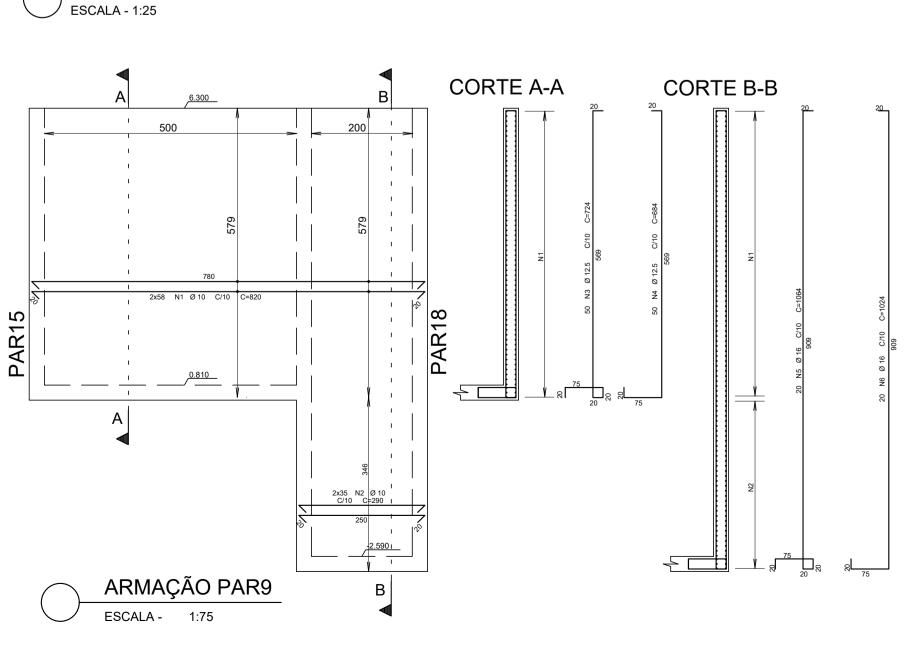

DESENHO PRANCHA Nº

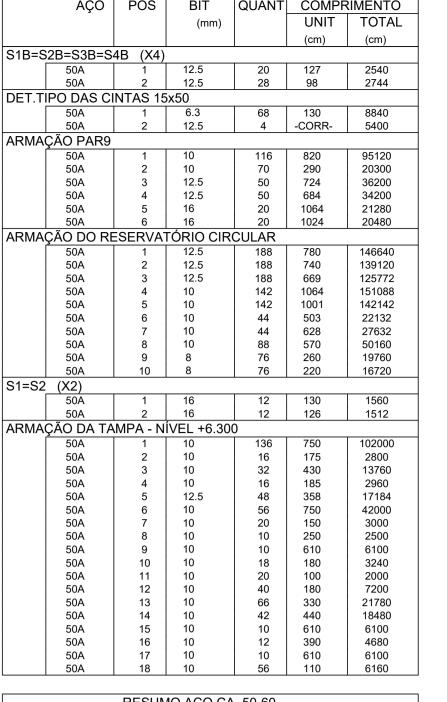

06/10


PROJETO EXECUTIVO PROJETO ESTRUTURAL EEE-PF2 ARMAÇÃO

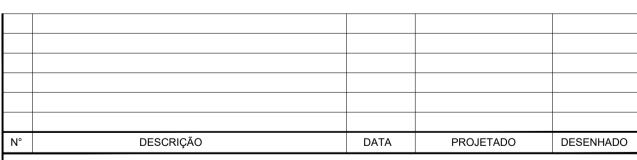

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA				
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIROZ				
PROJETO:	ENG° CARLOS CREA/ES: 011840/D				
DESENHO:	EQUIPE ML	ESCALA:	INDICADA		
ARQUIVO:	0658ST-006-EST-R00.DWG	DATA:	JUNHO/2019		







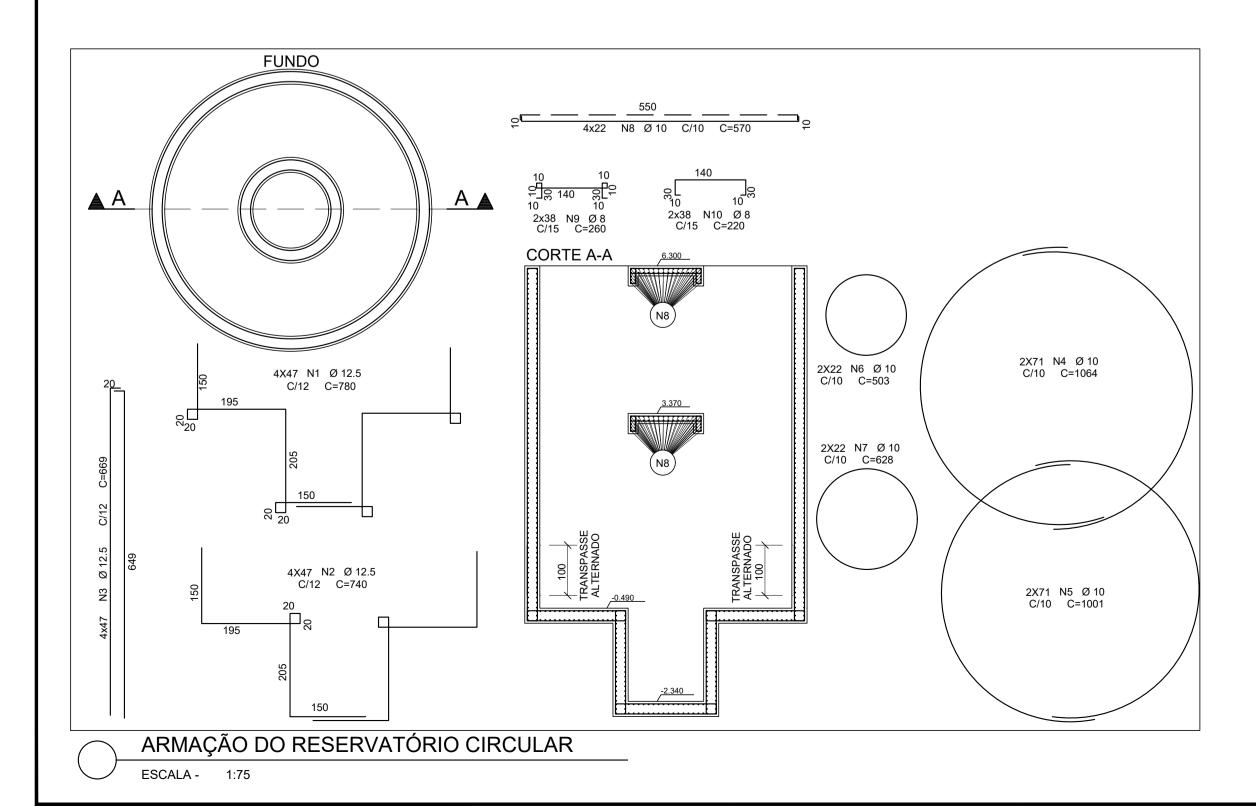
DET.TIPO DAS CINTAS 15x50

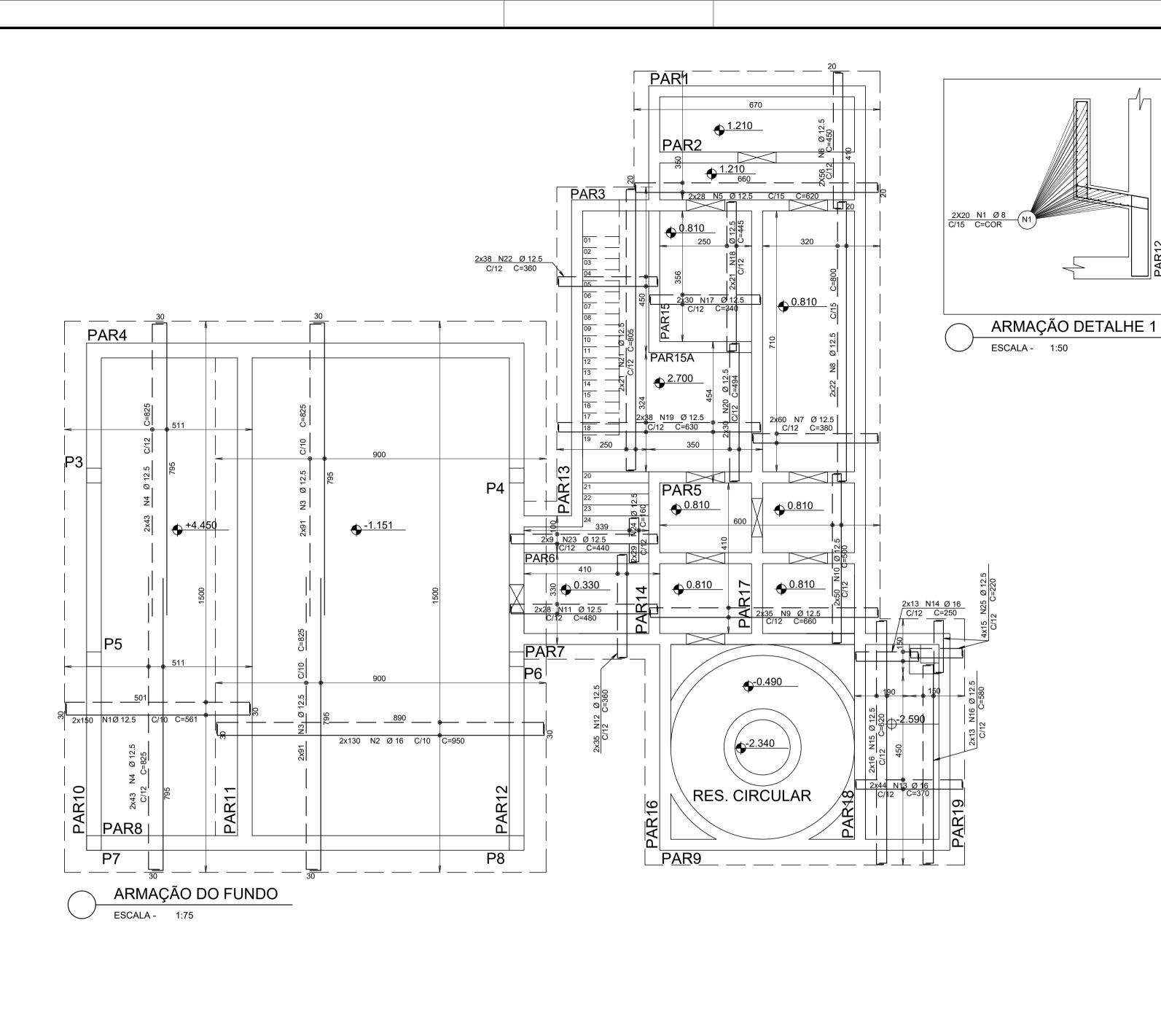


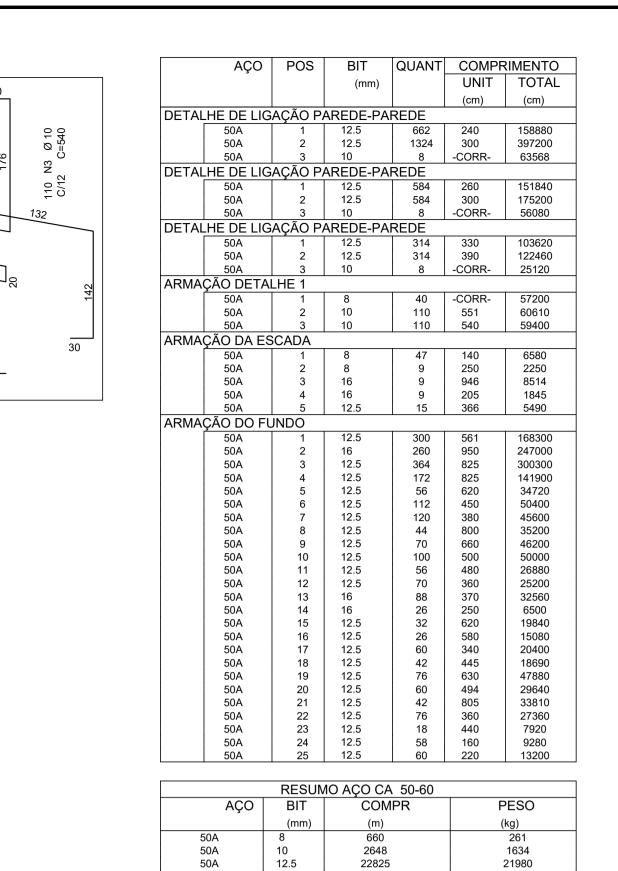
	50A	17	10	10	610	6100
	50A	18	10	56	110	6160
RESUMO AÇO CA 50-60						
	AÇO	BIT	COM	PR	P	ESO
		(mm)	(m)		(kg)
5	50A	6.3	88		22	
5	50A	8	365	365 144		144
5	50A	10	7594 40		4686	
5	50A	12.5	5098 49		4909	
5	50A	16	448		707	
Peso Total 50A = 10468 kg				g		

NOTAS :	
1 – COTAS E DIMENSÕES EM CM.	LAJES: 5.0CM SAPATAS: 5.0CM
2 - CONCRETO : FCK = 40MPA	PILARES: 5.0CM VIGAS: 5.0CM
MÓDULO DE ELASTICIDADE : ECS = 30GPA	BLOCOS: 5.0CM TUBULÃO: 5.0CM
FATOR ÁGUA CIMENTO : A/C <=0.45	RADIER: 5.0CM
CONSUMO DE CIMENTO : 350KGF/M3	13 - NORMA DE FÔRMAS E ESCORAMENTOS :NBR 15696/2009
3 - ACOS : CA-50 - FYK = 500 MPA	FÓRMAS E ESCORAMENTOS PARA ESTRUTURAS DE CONCRETO
CA-60 - FYK = 600 MPA	PROJETO, DIMENSIONAMNETO E PROCEDIMENTOS EXECUTIVOS
4 - CONCRETO DE REGULARIZAÇÃO:	14 - NORMA DE CARGAS : NBR 6120/1980
MÓDULO DE ELASTICIDADE : ECS = 18.5GPA	CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES
ESPESSURA : 5.0CM	15 - NORMA DE CÁLCULO : NBR 6118/2014
CONSUMO DE CIMENTO : 250KGF/M3	PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO
5 - AS COTAS PREVALECEM SOBRE O DESENHO	16 - NORMA DE FUNDAÇÕES : NBR 6122/2010
6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = IV	PROJETO E EXECUÇÃO DE FUNDAÇÕES
7 - FATOR DO TERRENO:SI = 1.0	17 - NORMA DE INCÊNDIO EM CONCRETO : NBR 15200/2012
8 - CATEGORIA DE RUGOSIDADE:S2 = I	PROJETO DE ESTRUTURAS DE CONCRETO EM SITUAÇÃO DE INCÊNDIO
9 - CLASSE DA EDIFICAÇÃO:S2 = C	18 - NORMA DE EXECUÇÃO DE CONCRETO : NBR 14931/2004
10 - FATOR ESTATÍSTICO:S3 = 1.00	EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO
11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S	19 - AS NORMAS CITADAS ACIMA DEVEM SER SEGUIDAS
12 - COBRIMENTO DAS ARMADURAS :	TANTO NA ELABORAÇÃO DOS PROJETOS QUANTO NA EXECUÇÃO DAS OBRAS

REVISÃO

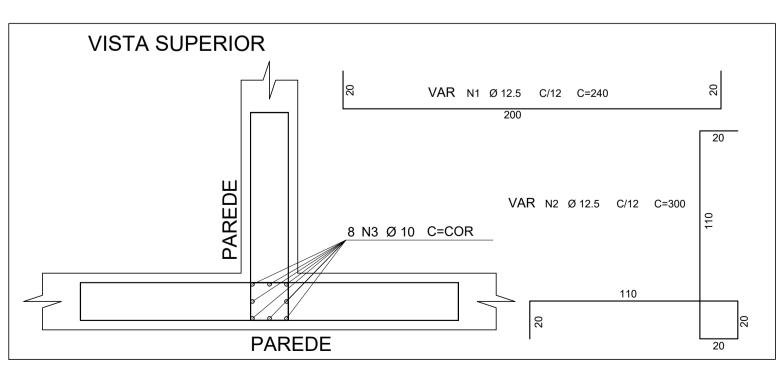

COMPANHIA DE ÁGUA E ESGOTO DO CEARÁ DIRETORIA DE ENGENHARIA 08/10 GERÊNCIA DE PROJETOS DE ENGENHARIA


SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA - CE

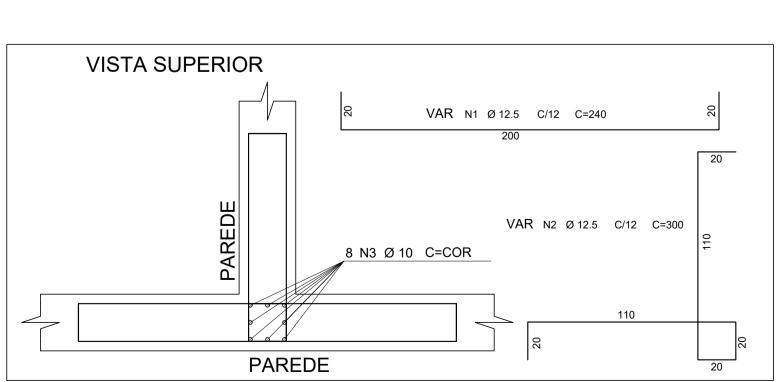

PROJETO EXECUTIVO PROJETO ESTRUTURAL EEE-PF2 ARMAÇÃO

DESENHO PRANCHA Nº

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA		
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIF	ROZ	
PROJETO:	ENG° CARLOS CREA/ES: 01°	1840/D	
DESENHO:	EQUIPE ML	ESCALA:	INDICADA
ARQUIVO:	0658ST-008-EST-R00.DWG	DATA:	JUNHO/2019



4677


28552 kg

CORTE A-A	2 120 10 47 N1 Ø 8 C/15 C=140	QL 230 JQ 9 N2 Ø 8 C/15 C=250	
PAR5 100 45 200 201 201 202 303 445	95 9 N4 Ø 16 C/12 C=205 9 N3 Ø 76 770 C/72	N2 21 22 23 24 1.700	PAR6

Peso Total 50A =

DETALHE DE LIGAÇÃO PAREDE-PAREDE TRASNSVERSAL (VERTICAL)

GERÊNCIA DE PROJETOS DE ENGENHARIA COORDENAÇÃO: ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIROZ PROJETO: ENGº CARLOS CREA/ES: 011840/D EQUIPE ML ESCALA: INDICADA DESENHO: DATA: JUNHO/2019 0658ST-009-EST-R00.DWG

11 - VELOCIDADE BÁSICA DO VENTO:V = 30M/S 19 - AS NORMAS CITADAS ACIMA DEVEM SER SECUIDAS 12 - COBRIMENTO DAS ARMADURAS : DESCRIÇÃO DATA PROJETADO DESENHADO

ENGENHARIA & PROJETOS

Lajes: 5.0cm

PILARES: 5.0CM

BLOCOS: 5.0CM

RADIER: 5.0CM

SAPATAS: 5.0CM

TUBULÃO: 5.0CM

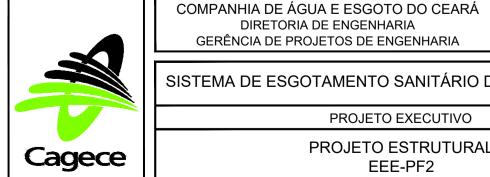
VIGAS: 5.0CM

13 - NORMA DE FÔRMAS E ESCORAMENTOS :NBR 15696/2009

CARGAS PARA CÁLCULO DE ESTRUTURAS EM EDIFICAÇÕES

17 - NORMA DE INCÊNDIO EM CONCRETO: NBR 15200/2012

EXECUÇÃO DE ESTRUTURAS DE CONCRETO - PROCEDIMENTO


PROJETO DE ESTRUTURAS DE CONCRETO-PROCEDIMENTO

14 - NORMA DE CARGAS : NBR 6120/1980

15 - NORMA DE CÁLCULO : NBR 6118/2014

16 - NORMA DE FUNDAÇÕES : NBR 6122/2010

REVISÃO

NOTAS:

1 - COTAS E DIMENSÕES EM CM.

2 - CONCRETO : FCK = 40MPA

MÓDULO DE ELASTICIDADE : ECS = 30GPA

CA-60 - FYK = 600 MPA

MÓDULO DE ELASTICIDADE : ECS = 18.5GPA

CONSUMO DE CIMENTO : 250KGF/M3

6 - CLASSE DE AGRESSIVIDADE AMBIENTAL = IV

5 - AS COTAS PREVALECEM SOBRE O DESENHO

FATOR ÁGUA CIMENTO : A/C <= 0.45

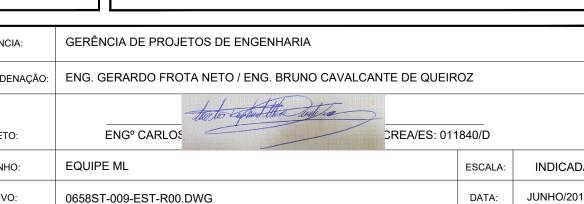
CONSUMO DE CIMENTO : 350KGF/M3

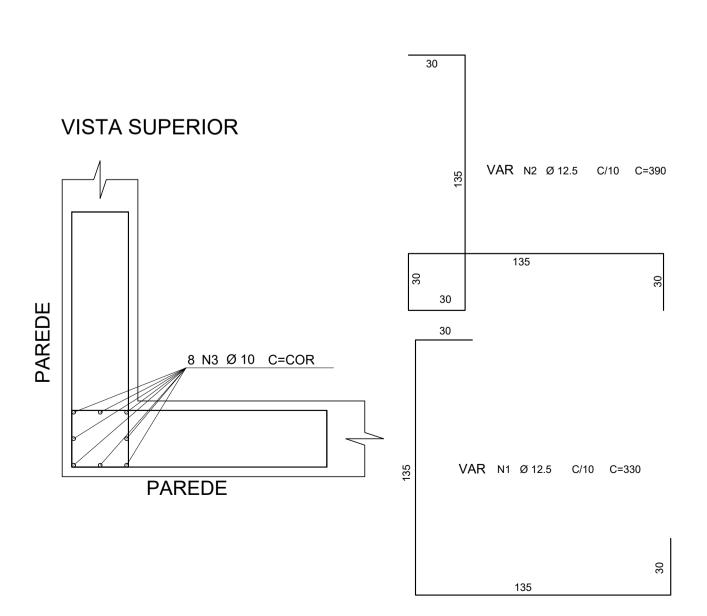
3 - ACOS : CA-50 - FYK = 500 MPA

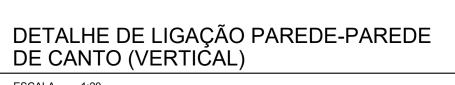
4 - CONCRETO DE REGULARIZAÇÃO:

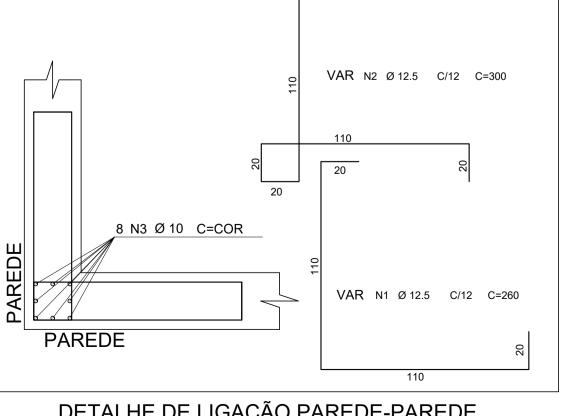
ESPESSURA: 5.0CM

7 - FATOR DO TERRENO:S1 = 1.0

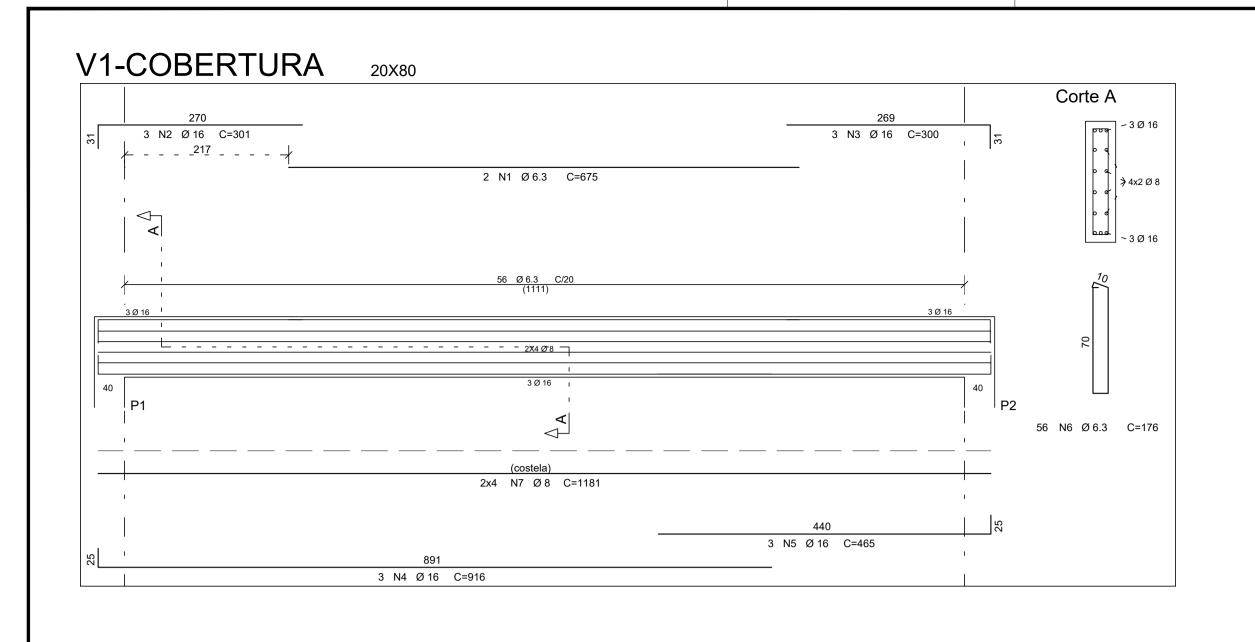

8 - CATEGORIA DE RUGOSIDADE:S2 = I 9 - CLASSE DA EDIFICAÇÃO:S2 = C 10 - FATOR ESTATÍSTICO:S3 = 1.00

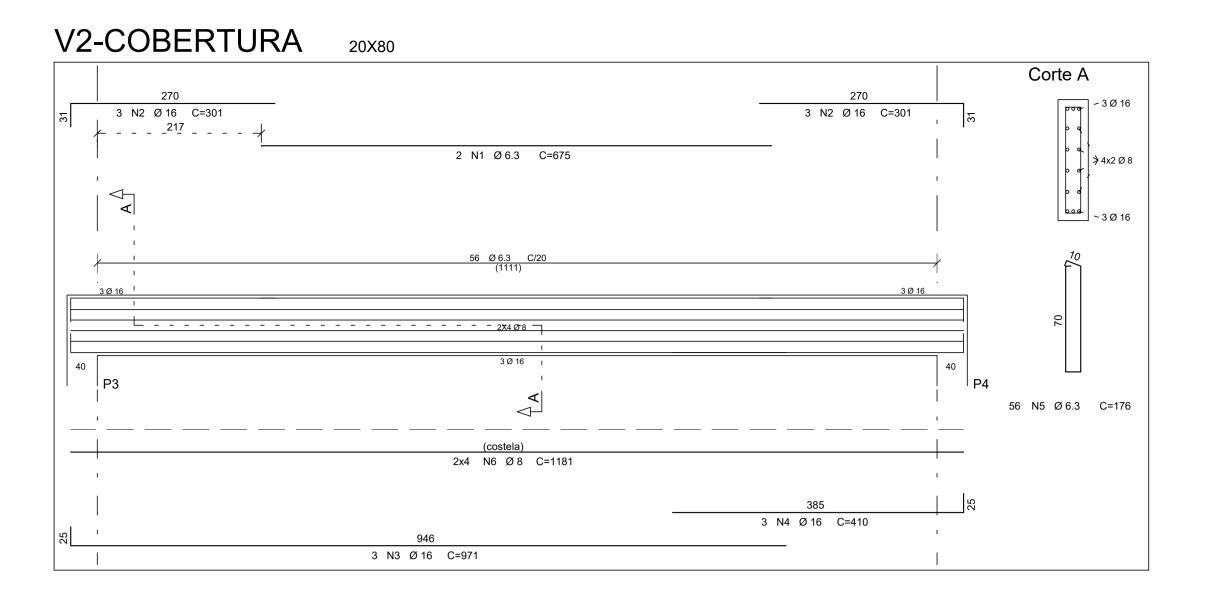

> DIRETORIA DE ENGENHARIA GERÊNCIA DE PROJETOS DE ENGENHARIA SISTEMA DE ESGOTAMENTO SANITÁRIO DE FORTALEZA - CE


> > PROJETO EXECUTIVO PROJETO ESTRUTURAL EEE-PF2 ARMAÇÃO

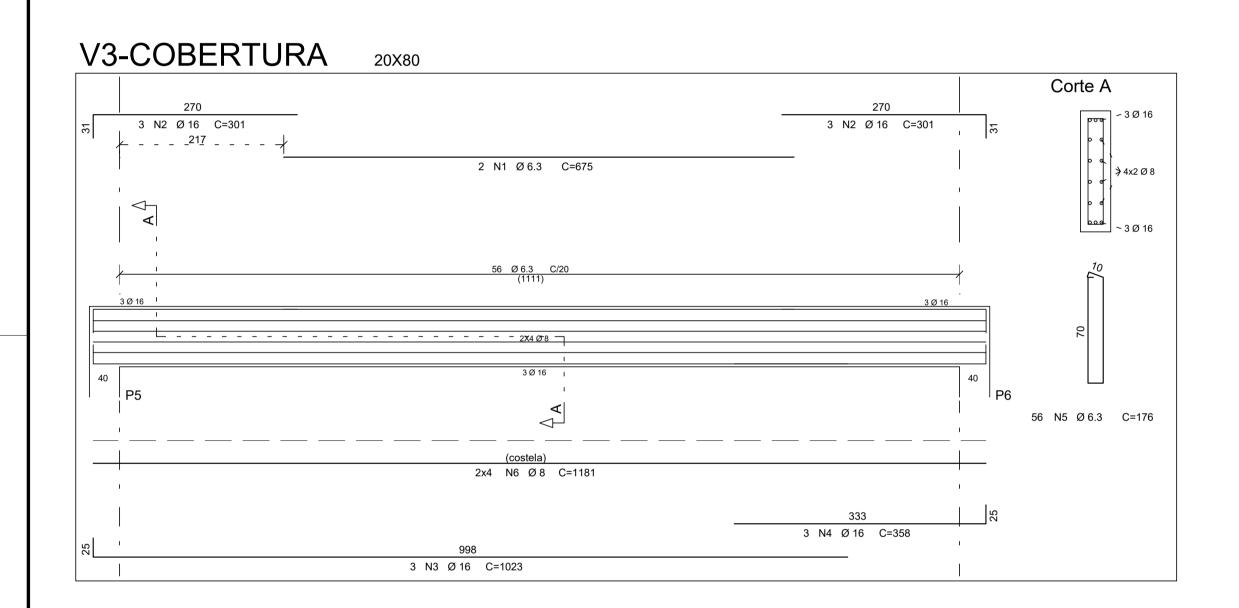

DESENHO PRANCHA Nº

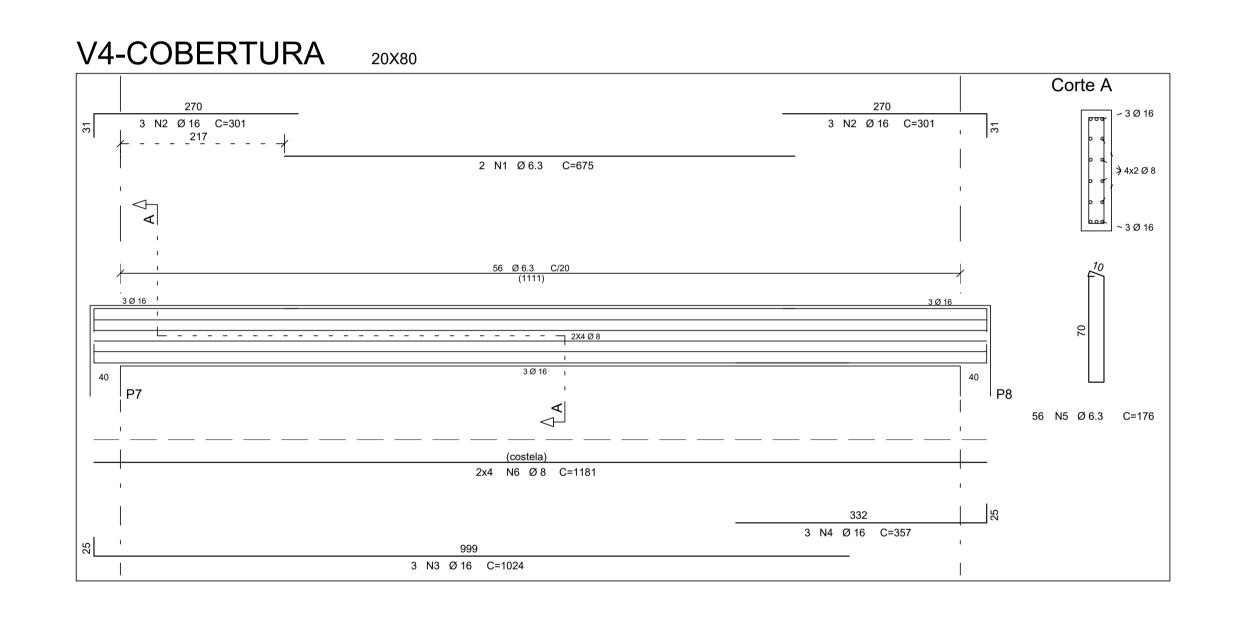
09/10

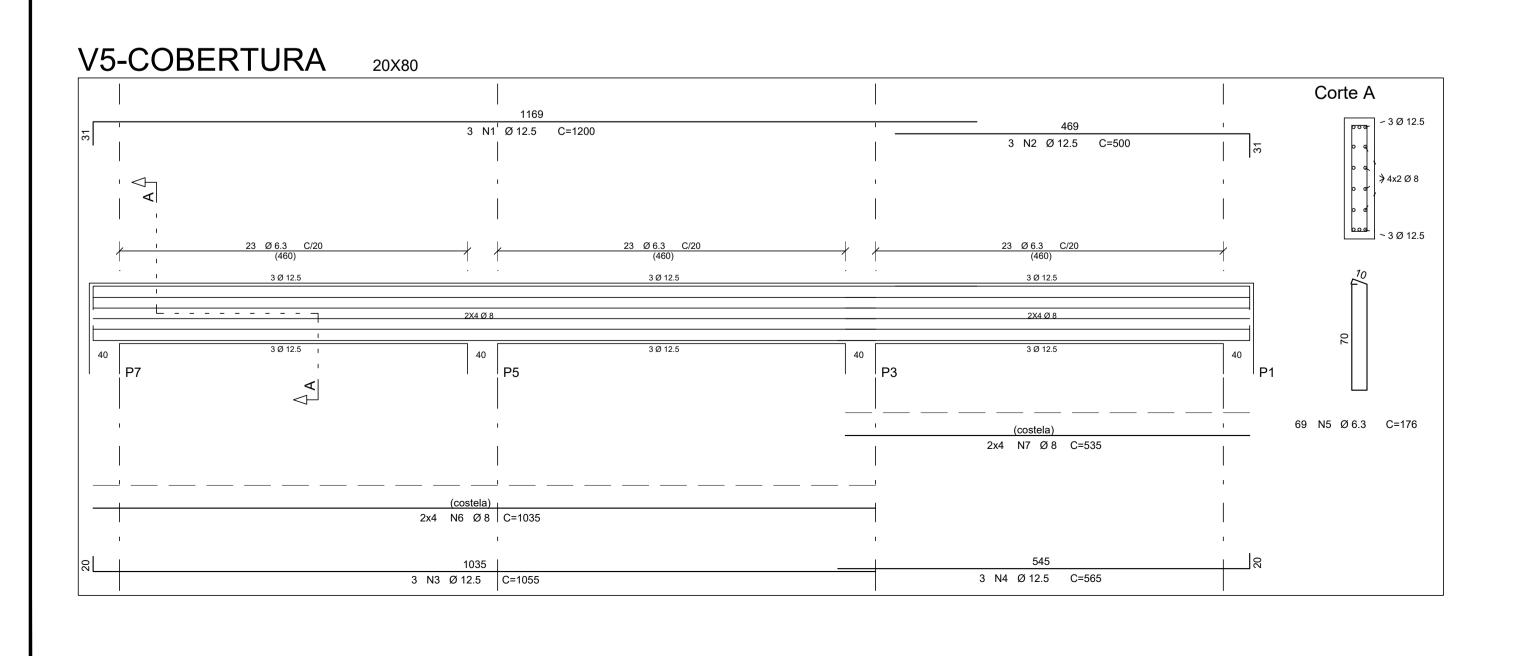


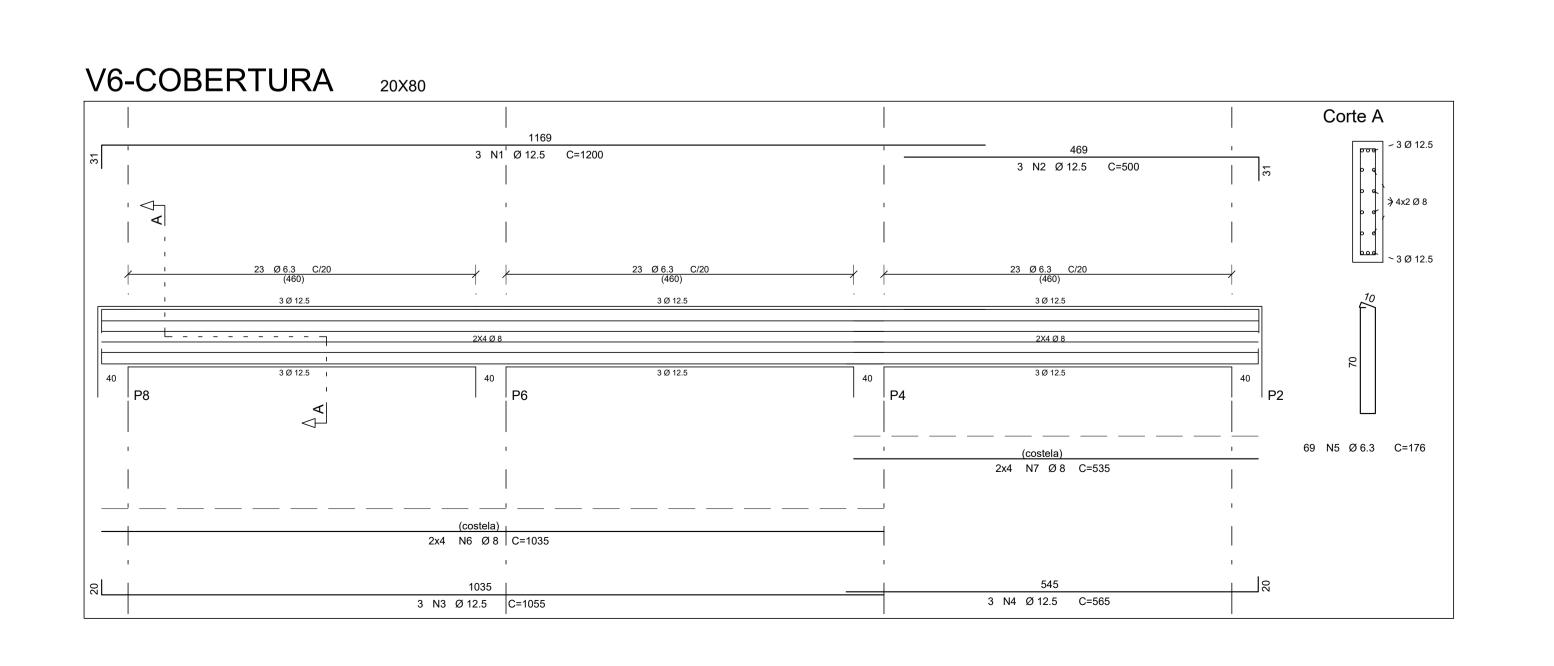


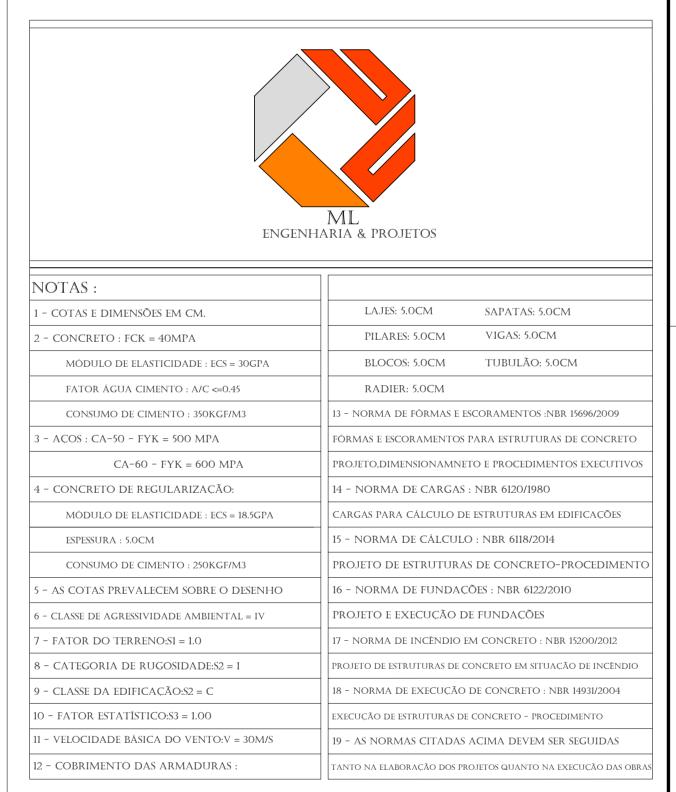
VISTA SUPERIOR

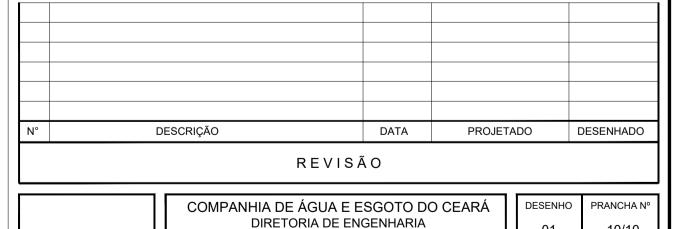

DETALHE DE LIGAÇÃO PAREDE-PAREDE DE CANTO (VERTICAL) ESCALA - 1:20






	AÇO	POS	BIT	QUANT	COMPF	RIMENTO
			(mm)		UNIT	TOTAL
					(cm)	(cm)
V1-CC	BERTURA			•		
	50A	1	6.3	2	675	1350
	50A	2	16	3	301	903
	50A	3	16	3	300	900
	50A	4	16	3	916	2748
	50A	5	16	3	465	1395
	50A	6	6.3	56	176	9856
	50A	7	8	8	1181	9448
V2-CC	BERTURA					
	50A	1	6.3	2	675	1350
	50A	2	16	6	301	1806
	50A	3	16	3	971	2913
	50A	4	16	3	410	1230
	50A	5	6.3	56	176	9856
	50A	6	8	8	1181	9448
V3-CC	BERTURA					
	50A	1	6.3	2	675	1350
	50A	2	16	6	301	1806
	50A	3	16	3	1023	3069
	50A	4	16	3	358	1074
	50A	5	6.3	56	176	9856
	50A	6	8	8	1181	9448
V4-CC	BERTURA					
	50A	1	6.3	2	675	1350
	50A	2	16	6	301	1806
	50A	3	16	3	1024	3072
	50A	4	16	3	357	1071
	50A	5	6.3	56	176	9856
	50A	6	8	8	1181	9448
V5-CC	BERTURA					
	50A	1	12.5	3	1200	3600
	50A	2	12.5	3	500	1500
	50A	3	12.5	3	1055	3165
	50A	4	12.5	3	565	1695
	50A	5	6.3	69	176	12144
	50A	6	8	8	1035	8280
	50A	7	8	8	535	4280
V6-CC	BERTURA					
	50A	1	12.5	3	1200	3600
	50A	2	12.5	3	500	1500
	50A	3	12.5	3	1055	3165
	50A	4	12.5	3	565	1695
	50A	5	6.3	69	176	12144
	50A	6	8	8	1035	8280
	50A	7	8	8	535	4280


RESUMO AÇO CA 50-60			
AÇO	BIT	COMPR	PESO
	(mm)	(m)	(kg)
50A	6.3	691	169
50A	8	629	249
50A	12.5	199	192
50A	16	238	375
Peso Total	50A =	985 kg	



GERÊNCIA DE PROJETOS DE ENGENHARIA	01	10/1
SISTEMA DE ESGOTAMENTO SANITÁRIO DE	FORTAL	EZA - (
DBO IETO EVECUTIVO		

PROJETO EXECUTIVO

PROJETO ESTRUTURAL

EEE-PF2

ARMAÇÃO

GERÊNCIA:	GERÊNCIA DE PROJETOS DE ENGENHARIA		
COORDENAÇÃO:	ENG. GERARDO FROTA NETO / ENG. BRUNO CAVALCANTE DE QUEIR	OZ	
PROJETO:	ENGO CARLOS RAPHAEL MONTEIRO DE LEMOS - CREA/ES: 011	840/D	
DESENHO:	EQUIPE ML	ESCALA:	INDICADA
ARQUIVO:	0658ST-010-EST-R00.DWG	DATA:	JUNHO/2019